rock masses
Recently Published Documents


TOTAL DOCUMENTS

1992
(FIVE YEARS 392)

H-INDEX

65
(FIVE YEARS 12)

Author(s):  
Linyi Li ◽  
Junsheng Yang ◽  
Jian Wu ◽  
Shuying Wang ◽  
Xinghua Fang ◽  
...  

2022 ◽  
Vol 9 ◽  
Author(s):  
Xing-Chao Lin ◽  
Qiang Zhang ◽  
Jiufeng Jin ◽  
Guangming Chen ◽  
Jin-Hang Li

On the basis of the numerical manifold method, this work introduces the concept of stress intensity factor at the crack tip in fracture mechanics and proposes the utilisation of artificial joint technology to ensure the accuracy of joint geometric dimensions in the element generation of the numerical manifold method. The contour integral method is used to solve the stress intensity factor at the joint tip, and the failure criterion and direction of crack propagation at the joint tip are determined. Element reconstruction and crack tracking are implemented in crack propagation, and a simulation programme of the entire process of deformation, failure, propagation and coalescence of jointed rock masses is developed. The rationality of the proposed method is verified by performing the typical uniaxial compression test and direct shear test.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012028
Author(s):  
D J W Mboussa ◽  
S Sun

Abstract Tunneling construction in the mountain area is a challenge for engineers and geotechnicians because of instability due to the presence of discontinuities. The objective of this paper is the modeling of surrounding rock masses for the stability of the diversion tunnel to predict the behavior of rock masses during the excavation process for the Nam Phoun hydropower station project in Laos. Field investigation and laboratories test was realized; Empirical methods as Rock mass designation and Geological Strength Index were performed, rock masses were classified in three categories (RM-1, RM-2, and RM-3); in situ stresses were obtained from existing equations, numerical modeling was performed by the 2D plane strain finite element code Phase2 developed by Rocscience, using Generalized Hoek-Brown criterion for each type of rock masses. The results of numerical modeling show the strength zones of stresses and deformations around the tunnel and predict the instabilities around the tunnel during excavations processes. Thus, for all rock’s masses, it will be necessary to consider an analysis for the supports design before the excavation’s process. The findings of this study allow a clearer understanding of the importance to assess a predictive analysis of slope stability during the feasibility phase of a project by engineers to have an idea of instabilities and its significant in preventing the impact on the cost of the project.


2021 ◽  
Vol 6 (2) ◽  
pp. 119
Author(s):  
Aisyah Shahirah Juhari ◽  
I Gde Budi Indrawan, Dr. ◽  
Wahyu Wilopo

Several attraction places and agriculture area that essentials for tourism and villager to do their activities are located approximately 6 km along the road of Candi Ijo to Ngoro-Oro in between Prambanan and Patuk sub-districts, Yogyakarta, Indonesia. Many jointed rock masses along the road have the potential to fail. This paper describes the rock mass characteristic and quality determined using the Geological Strength Index (GSI) and Rock Mass Rating (RMR) classifications. The rock mass characteristic and quality were essentially the preliminary results of a study to evaluate stability of the rock slopes along the road of Candi Ijo to Ngoro-Oro. Field observation and laboratory tests were carried out to determine parameters of the GSI and RMR.  The results show that the slopes in the study area consisted of tuffaceous sandstone, vitric tuff, lithic tuff, cemented tuffaceous sandstone, lapilli tuff, subarkose, laminated mudrock, and laminated tuffaceous sandstone. The intact rocks were classified as weak to very strong. The research area consisted of three rock mass qualities, namely fair rock mass quality having GSI between 30 and 45 and RMR between 41 and 60,  good rock mass quality having GSI between 46 to 65 and RMR between 61 and 80, and very good rock mass quality having GSI > 65 and RMR between 81-100. The relationship between GSI and RMR obtained in this study was in good agreement with that proposed by Hoek et al. (1995).


Sign in / Sign up

Export Citation Format

Share Document