stream incision
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

2022 ◽  
Vol 10 (1) ◽  
pp. 1-22
Author(s):  
Elco Luijendijk

Abstract. The extent to which groundwater flow affects drainage density and erosion has long been debated but is still uncertain. Here, I present a new hybrid analytical and numerical model that simulates groundwater flow, overland flow, hillslope erosion and stream incision. The model is used to explore the relation between groundwater flow and the incision and persistence of streams for a set of parameters that represent average humid climate conditions. The results show that transmissivity and groundwater flow exert a strong control on drainage density. High transmissivity results in low drainage density and high incision rates (and vice versa), with drainage density varying roughly linearly with transmissivity. The model evolves by a process that is defined here as groundwater capture, whereby streams with a higher rate of incision draw the water table below neighbouring streams, which subsequently run dry and stop incising. This process is less efficient in models with low transmissivity due to the association between low transmissivity and high water table gradients. A comparison of different parameters shows that drainage density is most sensitive to transmissivity, followed by parameters that govern the initial slope and base level. The results agree with field data that show a negative correlation between transmissivity and drainage density. These results imply that permeability and transmissivity exert a strong control on drainage density, stream incision and landscape evolution. Thus, models of landscape evolution may need to explicitly include groundwater flow.


2021 ◽  
Author(s):  
Elco Luijendijk

Abstract. The extent to which groundwater flow affects drainage density and erosion has long been debated, but is still uncertain. Here, I present a new hybrid analytical and numerical model that simulates groundwater flow, overland flow, hillslope erosion and stream incision. The model is used to explore the relation between groundwater flow and the incision and persistence of streams for a set of parameters that represent average humid climate conditions. The results show that transmissivityand groundwater flow exert a strong control on drainage density. High transmissivity results in low drainage density and high incision rates and vice versa, with drainage density varying roughly linearly with transmissivity. The model evolves by a process that is defined here as groundwater capture, whereby streams with a higher rate of incision draw the watertable below neighbouring streams, which subsequently run dry and stop incising. This process is less efficient in models with low transmissivity due to the association of low transmissivity and high watertable gradients. A comparison of different parameters shows that drainage density is the most sensitive to transmissivity, followed by parameters that govern initial slope and stream erosion. These results imply that permeability and transmissivity exert a strong control on drainage density, stream incision and landscape evolution and that models of landscape evolution may need to explicitly include groundwater flow.


2018 ◽  
Vol 111 (2) ◽  
pp. 180-203
Author(s):  
Diethard Sanders ◽  
Hannah Pomella ◽  
Charlotte Gild

AbstractIn intramontane landscapes shaped by glacial-interglacial cycles, the most rapid changes during the proglacial/paraglacial phases may be amplified by catastrophic mass-wasting. Herein, we describe the Last Glacial Maximum (LGM) to Holocene development of a catchment in the Northern Calcareous Alps wherein intense proglacial/paraglacial sedimentation and descend of a rock avalanche persistently modified drainage and sediment dispersal.During buildup of the LGM, the pre-last glacial Strassberg valley – the trunk valley of this study – was filled with a proglacial fluvio-lacustrine succession. Thereafter, the area became largely buried under the Inn ice stream. During deglacial ice melt, copious sediment was shed from glacially-conditioned mountain flanks. Alluvial fans cut off from their former supply area, and perched in isolated position, result from presumed sediment dispersal across dead ice. Shortly after deglaciation, a ~11 Mm3 rock avalanche detached from a high cliff, overran an opposing mountain ridge, and spread over a lower-positioned plateau. The rock avalanche blocked the Strassberg valley and set the base-level to an intramontane basin that persists until present. A quartz OSL age from a loess drape above the rock-avalanche deposit dates mass wasting prior to 18.77 ± 1.55 ka; so far, this is the oldest age-bracketed post-LGM catastrophic mass-wasting of the Eastern Alps.After mass wasting, the valley was barred by the rock-avalanche deposit. This, in turn, triggered a westward switch of drainage thalweg and stream incision. The present Strassberg valley is an epigenetic bedrock gorge 1.5 km in length and down to 100 m in depth. A 234U/230Th calcite disequilibrium age of 9 ± 1 ka from cemented talus indicates that most incision took place during the late-glacial to early Holocene. Aside of the large-scale morphology (valleys, ranges) the drainage, the smaller-scale morphology, and the sediment volumes of the study area are mainly coined by proglacial/paraglacial processes and by rock avalanching. Holocene landscape changes are modest and chiefly comprise aggradation of high-positioned scree slopes, colluvial/alluvial redeposition and stream incision, and slope stabilization by reforestation. Our results underscore that intramontane sceneries are mosaics with respect to the age of landforms and that large parts of the landscape still are off geomorphic equilibrium with interglacial conditions.


2017 ◽  
Vol 22 (2) ◽  
pp. 06016017 ◽  
Author(s):  
Joshua N. Cole ◽  
Andrew J. Miller ◽  
Erin Stapleton ◽  
Claire Welty

2016 ◽  
Vol 10 (3) ◽  
pp. 455-478 ◽  
Author(s):  
Efthimios Karymbalis ◽  
Dimitrios Papanastassiou ◽  
Kalliopi Gaki-Papanastassiou ◽  
Maria Ferentinou ◽  
Christos Chalkias

2016 ◽  
Author(s):  
Bradley G. Johnson ◽  
◽  
Hannah Rieden

2015 ◽  
Vol 40 (13) ◽  
pp. 1764-1778 ◽  
Author(s):  
Nathan J. Lyons ◽  
Michael J. Starek ◽  
Karl W. Wegmann ◽  
Helena Mitasova

Sign in / Sign up

Export Citation Format

Share Document