melting curves
Recently Published Documents


TOTAL DOCUMENTS

259
(FIVE YEARS 25)

H-INDEX

43
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Katerin Almendras ◽  
Stefania Iannuzzi ◽  
Margarita Carú ◽  
Julieta Orlando

Author(s):  
I. A. Saranov ◽  
O. B. Rudakov ◽  
K. K. Polansky ◽  
A. S. Ramazanov ◽  
S. A. Balaeva ◽  
...  

The method of differential scanning calorimetry (DSC) is used to characterize the thermophysical properties during melting of samples of milk thistle oil of various geographic origins, seeds and meal. The world experience in applying the DSC method on the study of milk thistle oils is generalized. The temperature measurement program is described. It is shown that, despite the general similarity of the curve profiles of the melting DSC, there are differences in the profiles due to genotypic and phenotypic factors - variety and growing location. The DSC curves of freshly squeezed oil distinguish from the DSC curves after 6 months storage of the oil due to oxidative deterioration and the formation of more refractory partially oxidized triacylglycerols. This fact is relevant to determining the capabilities of the DSC method in controlling the freshness of vegetable oils. The peaks amplitudes in the DSC curves of fresh oil are higher than those of oils that has been stored at room temperature for six months. Double differentiation of the melting curves makes it possible to reveal the temperatures of phase transitions in the case of overlapping endothermic peaks, the establishment of which is difficult without double differentiation. Using the «Netzsch Peak Separation» software to divide the peaks in the melting curves allows at once to estimate the areas of overlapping peaks and increase the informativeness of the DSC data. Thermal analysis of milk thistle seeds and meal reveals that the meal contains a residual amount of oil, in which the proportion of triunsaturated fats is overestimated in comparison to seeds, indicating that triunsaturated fats are more difficult to extract from oil by cold pressing.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Andreas Untergasser ◽  
Jan M. Ruijter ◽  
Vladimir Benes ◽  
Maurice J. B. van den Hoff

Abstract Background The analyses of amplification and melting curves have been shown to provide valuable information on the quality of the individual reactions in quantitative PCR (qPCR) experiments and to result in more reliable and reproducible quantitative results. Implementation The main steps in the amplification curve analysis are (1) a unique baseline subtraction, not using the ground phase cycles, (2) PCR efficiency determination from the exponential phase of the individual reactions, (3) setting a common quantification threshold and (4) calculation of the efficiency-corrected target quantity with the common threshold, efficiency per assay and Cq per reaction. The melting curve analysis encompasses smoothing of the observed fluorescence data, normalization to remove product-independent fluorescence loss, peak calling and assessment of the correct peak by comparing its melting temperature with the known melting temperature of the intended amplification product. Results The LinRegPCR web application provides visualization and analysis of a single qPCR run. The user interface displays the analysis results on the amplification curve analysis and melting curve analysis in tables and graphs in which deviant reactions are highlighted. The annotated results in the tables can be exported for calculation of gene-expression ratios, fold-change between experimental conditions and further statistical analysis. Web-based LinRegPCR addresses two types of users, wet-lab scientists analyzing the amplification and melting curves of their own qPCR experiments and bioinformaticians creating pipelines for analysis of series of qPCR experiments by splitting its functionality into a stand-alone back-end RDML (Real-time PCR Data Markup Language) Python library and several companion applications for data visualization, analysis and interactive access. The use of the RDML data standard enables machine independent storage and exchange of qPCR data and the RDML-Tools assist with the import of qPCR data from the files exported by the qPCR instrument. Conclusions The combined implementation of these analyses in the newly developed web-based LinRegPCR (https://www.gear-genomics.com/rdml-tools/) is platform independent and much faster than the original Windows-based versions of the LinRegPCR program. Moreover, web-based LinRegPCR includes a novel statistical outlier detection and the combination of amplification and melting curve analyses allows direct validation of the amplification product and reporting of reactions that amplify artefacts.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 696
Author(s):  
Denis N. Karimov ◽  
Elena A. Sulyanova ◽  
Boris P. Sobolev

The concentration series of nonstoichiometric crystals Ca1–xYxF2+x (x = 0.01–0.14) was obtained from a melt by directional crystallization to refine the composition of the temperature maximum on the melting curves. A precision (±9 × 10−5 Å) determination of lattice parameters of theCa1–xYxF2+x crystals with the structure of fluorite (sp. gr. Fm-3m) was performed, and a linear equation of their concentration dependence was calculated: a(x) = 5.46385(5) + 0.1999(4) x. The distribution of yttrium along the crystals Ca1–xYxF2+x, the content of which is determined by the precision lattice parameters, is studied. The congruently melting composition x = 0.105(5) of the Ca1–xYxF2+x phase is refined by the method of directional crystallization.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 537
Author(s):  
Samuel R. Baty ◽  
Leonid Burakovsky ◽  
Daniel Errandonea

Copper has been considered as a common pressure calibrant and equation of state (EOS) and shock wave (SW) standard, because of the abundance of its highly accurate EOS and SW data, and the assumption that Cu is a simple one-phase material that does not exhibit high pressure (P) or high temperature (T) polymorphism. However, in 2014, Bolesta and Fomin detected another solid phase in molecular dynamics simulations of the shock compression of Cu, and in 2017 published the phase diagram of Cu having two solid phases, the ambient face-centered cubic (fcc) and the high-PT body-centered cubic (bcc) ones. Very recently, bcc-Cu has been detected in SW experiments, and a more sophisticated phase diagram of Cu with the two solid phases was published by Smirnov. In this work, using a suite of ab initio quantum molecular dynamics (QMD) simulations based on the Z methodology, which combines both direct Z method for the simulation of melting curves and inverse Z method for the calculation of solid–solid phase boundaries, we refine the phase diagram of Smirnov. We calculate the melting curves of both fcc-Cu and bcc-Cu and obtain an equation for the fcc-bcc solid–solid phase transition boundary. We also obtain the thermal EOS of Cu, which is in agreement with experimental data and QMD simulations. We argue that, despite being a polymorphic rather than a simple one-phase material, copper remains a reliable pressure calibrant and EOS and SW standard.


2021 ◽  
Vol 55 (1 (254)) ◽  
pp. 39-45
Author(s):  
Marine A. Parsadanyan

The study of complexes of groove binding ligand Hoechst 33258 (H33258) with Calf Thymus DNA has been carried out. The data obtained revealed that the melting curves of the complexes of H33258 with DNA are monophasic at low ligand concentrations (0 < r ≤ 0.2) and become biphasic at relatively high concentrations (0.2 < r ≤ 0.33). This effect was revealed to depend on the ionic strength of the solution, and can also occur at high concentrations of the ligand. Comparison of the obtained data with the results for poly(rA)-poly(rU) and poly(dA)-poly(dT) shows a coincidence in the case of DNA and poly(rA)-poly(rU), while in the case of poly(dA)-poly(dT) the melting curves become biphasic at low ligand concentrations and actually do not depend on the ionic strength of the solution.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 416
Author(s):  
Paraskevas Parisiades

The accurate determination of melting curves for transition metals is an intense topic within high pressure research, both because of the technical challenges included as well as the controversial data obtained from various experiments. This review presents the main static techniques that are used for melting studies, with a strong focus on the diamond anvil cell; it also explores the state of the art of melting detection methods and analyzes the major reasons for discrepancies in the determination of the melting curves of transition metals. The physics of the melting transition is also discussed.


Sign in / Sign up

Export Citation Format

Share Document