spur dikes
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 24)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Khosrow Hosseini ◽  
Shahab Nayyer ◽  
Mehran Kheirkhahan ◽  
Sayed-Farhad Mousavi

Abstract Modifying the river course for flood control, prevention of bed erosion, bank protection, and the regulation of river width are among the goals of spur dikes incorporation. The common spur dikes have simple (I), L and T geometrical shapes. The present research has been conducted to reduce the scour depth in front of the spurs dikes and improve the sedimentation conditions for the LTT combination of spur dikes in series by investigating different combinations of slots in the body of the spur dike; using numerical methods. The slot dimension was taken equal to 10% of the effective area of the spur dike body. Finally, the (LS-W-Wi, TS-W, TS-W-Wi) combination contained the slots in the web and wing of the first and third spur dike also the slot at the web of the middle spur dike was found as the best combination of slots. This combination conducted to reduce the scour depth about 6.8% and increase the deposition about 52% comparing by the spurs dikes without slots. Reducing the scour depth and increasing the sedimentation rate of materials between the spurs dikes. Also, the maximum scour depth decreases up to 20%. The results revealed that the presence of slots in spur dike structures and their different positions have complicated and considerable influences on the form and morphology of the erodible bed which could be the topic for further researches.


Author(s):  
Maryam Khajavi ◽  
Seyed Mahmood Kashefipour ◽  
Mahmood Shafai Bejestan

The bridge abutment is one of the main parts of a bridge and significantly contributes to bridge stability. This study experimentally investigated the effect of the unsteadiness characteristics of hydrographs on the scouring phenomenon around the bridge abutment under clear water conditions. The ability of the permeable and impermeable spur dikes and their distances from the abutment at its upstream on the control of scouring around the bridge abutment was also investigated. The experimental observations imply that the effect of unsteady flow on the scouring process is relatively similar to the steady flow conditions. The results showed that the base time of hydrographs, the type of spur dikes, and the distance of spur dikes from the bridge abutment were the dominant parameters among the considered parameters in this study on the scouring process around the abutment. The results also revealed that the impermeable spur dike was able to completely eliminate scouring around the bridge abutment for two distances of 2L and 3L (where L is the abutment length) for both steady and unsteady flow conditions.


2021 ◽  
Vol 147 (11) ◽  
pp. 04021050
Author(s):  
Manish Pandey ◽  
Mehdi Jamei ◽  
Masoud Karbasi ◽  
Iman Ahmadianfar ◽  
Xuefeng Chu

Author(s):  
Jinmeng Yang ◽  
Zhenzhong Shen ◽  
Jing Zhang ◽  
Xiaomin Teng ◽  
Wenbing Zhang ◽  
...  

Abstract In this paper, the effects of different combinations of permeable spur dikes installed in the bend section of spillway on flow characteristics and energy dissipation rate were experimentally and numerically investigated. The results indicate that The permeable spur dikes installed in the spillway bend appreciably contributes to the improvement on the water surface uniformity, and the water surface uniformity can reach 90.13% with three permeable spur dikes installed in the bend. The permeable spur dike can lead to different degrees of decrease in the time-averaged longitudinal velocity in each zone of spillway bend. Different from previous study, no circulation zone is formed upstream and downstream of permeable spur dike due to the presence of permeable holes, and the flow upstream of permeable spur dikes could be divided into three distinctly different flow modes according to dye tracing. The presence of permeable spur dikes causes the concentration of TKE zone at concave bank of the spillway bend, except for TKE zone immediately next to the bottom plate. The TKE first increases and then decreases with the increase in the vertical distance from the bottom plate of the spillway bend, exhibiting a typical parabolic distribution. The energy dissipation rate in the spillway bend with permeable spur dike was calculated using a modified integral method, and the dissipation rate can reach as high as 21.08% with three spur dikes installed in the bend.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1844
Author(s):  
Rahim Jafari ◽  
Jueyi Sui

Spur dikes are well-known structures that are widely used in rivers and coastal regions. Depending on their types, sizes, and orientation angles, spur dikes can substantially change flow characteristics. Results of previous studies indicate that the presence of an ice cover in rivers can cause complicated flow structures. The present experimental study investigates velocity fields and turbulence structures in the vicinity of spur dikes under ice cover with different roughness coefficients. The spur dikes were set up at the following three angles of orientation, 90°, 60°, and 45°. Our results show that the strongest velocity fluctuation occurs immediately above the scour hole surface and very close to the dike tip. The increase in the dike angle toward upstream, the velocity component values increase, leads to a larger scour hole. Results show that an increase in dike angle of each 10° (from 45° to 90°) increases the scour depth between 5% and 10%, depending on flow conditions. Furthermore, the increase in the cover roughness coefficient and the blockage ratio of a spur dike leads to a further increase in turbulence kinetic energy and 3D velocity components values. The findings of this study imply that the appearance of an ice cover can increase turbulence intensities up to nearly 30%.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1462
Author(s):  
Chung-Ta Liao ◽  
Keh-Chia Yeh ◽  
Yin-Chi Lan ◽  
Ren-Kai Jhong ◽  
Yafei Jia

Local scour is a common threat to structures such as bridge piers, abutments, and dikes that are constructed on natural rivers. To reduce the risk of foundation failure, the understanding of local scour phenomenon around hydraulic structures is important. The well-predicted scour depth can be used as a reference for structural foundation design and river management. Numerical simulation is relatively efficient at studying these issues. Currently, two-dimensional (2D) mobile-bed models are widely used for river engineering. However, a common 2D model is inadequate for solving the three-dimensional (3D) flow field and local scour phenomenon because of the depth-averaged hypothesis. This causes the predicted scour depth to often be underestimated. In this study, a repose angle formula and bed geometry adjustment mechanism are integrated into a 2D mobile-bed model to improve the numerical simulation of local scour holes around structures. Comparison of the calculated and measured bed variation data reveals that a numerical model involving the improvement technique can predict the geometry of a local scour hole around spur dikes with reasonable accuracy and reliability.


2021 ◽  
Author(s):  
Xiuzhu Peng ◽  
Xiangzhou Xu ◽  
Lu Gao

<p><strong>Abstract</strong>: To control the river regime in the wandering river channels is an important work of ecological protection and high-quality development in the Yellow River Basin. Using MIKE21, this study compared and analyzed the control effects of the spur dike group on the river regime under different oriented angles, layout methods, and dam types. The results show that: (1) A optimal oriented angle existed that can efficiently control the river regime. Among the dikes with three oriented angles designed in this study, the spur dam of 45° has the strongest effect blocking the flow, and the corresponding uniformity coefficient of the flow velocity CV reached the lowest value, 0.44, at this time. Under this condition, the flow-velocity distribution was more stable than that of other angles, dynamic pressure on the bank foundation was relatively small, and thus the groins could play a relatively effective influence on the protection of the river bend. (2) The effect on the river regime of a spur-dike group was more than the total amount of all single spur dikes. If only a single spur dike were arranged, the spur dike would keep the high-speed flow away from the concave bank and protect the riparian line with a length of about 80 m. In contrast, if the spur dikes worked as a group, a single spur dike would protect the riparian line with a length of about 100 m. (3) The diversion effect of the permeable groin in the lower Yellow River is the same as that of the solid groin with the same layout. Both the flow reduction rates of the permeable and solid groins are all close to 80%. It is concluded that the impermeable groins can be widely used in the lower Yellow River for it is able to achieve the expected control effect and relatively safe operation condition in virtue of permeability.</p><p><strong>Keywords</strong>: wandering river channel; permeable groins; flow characteristics; MIKE21</p>


2020 ◽  
pp. 201-208
Author(s):  
Liu Qingquan ◽  
Chan Li ◽  
Li Jiachun
Keyword(s):  

2020 ◽  
Vol 24 (11) ◽  
pp. 3279-3288 ◽  
Author(s):  
Mohammad Bahrami-Yarahmadi ◽  
Stefano Pagliara ◽  
Elham Yabarehpour ◽  
Noushin Najafi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document