portal protein
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 13)

H-INDEX

22
(FIVE YEARS 3)

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2532
Author(s):  
Abid Javed ◽  
Hugo Villanueva ◽  
Shadikejiang Shataer ◽  
Sara Vasciaveo ◽  
Renos Savva ◽  
...  

Widespread antibiotic resistance has returned attention to bacteriophages as a means of managing bacterial pathogenesis. Synthetic biology approaches to engineer phages have demonstrated genomic editing to broaden natural host ranges, or to optimise microbicidal action. Gram positive pathogens cause serious pastoral animal and human infections that are especially lethal in newborns. Such pathogens are targeted by the obligate lytic phages of the Salasmaviridae and Guelinviridae families. These phages have relatively small ~20 kb linear protein-capped genomes and their compact organisation, relatively few structural elements, and broad host range, are appealing from a phage-engineering standpoint. In this study, we focus on portal proteins, which are core elements for the assembly of such tailed phages. The structures of dodecameric portal complexes from Salasmaviridae phage GA1, which targets Bacillus pumilus, and Guelinviridae phage phiCPV4 that infects Clostridium perfringens, were determined at resolutions of 3.3 Å and 2.9 Å, respectively. Both are found to closely resemble the related phi29 portal protein fold. However, the portal protein of phiCPV4 exhibits interesting differences in the clip domain. These structures provide new insights on structural diversity in Caudovirales portal proteins and will be essential for considerations in phage structural engineering.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1504
Author(s):  
Justin C. Leavitt ◽  
Eddie B. Gilcrease ◽  
Brianna M. Woodbury ◽  
Carolyn M. Teschke ◽  
Sherwood R. Casjens

Tailed double-stranded DNA bacteriophages inject some proteins with their dsDNA during infection. Phage P22 injects about 12, 12, and 30 molecules of the proteins encoded by genes 7, 16 and 20, respectively. After their ejection from the virion, they assemble into a trans-periplasmic conduit through which the DNA passes to enter the cytoplasm. The location of these proteins in the virion before injection is not well understood, although we recently showed they reside near the portal protein barrel in DNA-filled heads. In this report we show that when these proteins are missing from the virion, a longer than normal DNA molecule is encapsidated by the P22 headful DNA packaging machinery. Thus, the ejection proteins occupy positions within the virion that can be occupied by packaged DNA when they are absent.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Michael H. C. Buch ◽  
William W. Newcomb ◽  
Dennis C. Winkler ◽  
Alasdair C. Steven ◽  
J. Bernard Heymann

ABSTRACT Herpes simplex virus 1 (HSV-1) requires seven proteins to package its genome through a vertex in its capsid, one of which is the portal protein, pUL6. The portal protein is also thought to facilitate assembly of the procapsid. While the portal has been visualized in mature capsids, we aimed to elucidate its role in the assembly and maturation of procapsids using cryo-electron tomography (cryoET). We identified the portal vertex in individual procapsids, calculated a subtomogram average, and compared that with the portal vertex in empty mature capsids (A-capsids). The resulting maps show the portal on the interior surface with its narrower end facing outwards, while maintaining close contact with the capsid shell. In the procapsid, the portal is embedded in the underlying scaffold, suggesting that assembly involves a portal-scaffold complex. During maturation, the capsid shell angularizes with a corresponding outward movement of the vertices. We found that in A-capsids, the portal translocates outward further than the adjacent capsomers and strengthens its contacts with the capsid shell. Our methodology also allowed us to determine the number of portal vertices in each capsid, with most having one per capsid, but some none or two, and rarely three. The predominance of a single portal per capsid supports facilitation of the assembly of the procapsid. IMPORTANCE Herpes simplex virus 1 (HSV-1) infects a majority of humans, causing mostly mild disease but in some cases progressing toward life-threatening encephalitis. Understanding the life cycle of the virus is important to devise countermeasures. Production of the virion starts with the assembly of an icosahedral procapsid, which includes DNA packaging proteins at a vertex, one of which is the dodecameric portal protein. The procapsid then undergoes maturation and DNA packaging through the portal, driven by a terminase complex. We used cryo-electron tomography to visualize the portal in procapsids and compare them to mature empty capsids. We found the portal located inside one vertex interacting with the scaffold protein in the procapsid. On maturation, the scaffold is cleaved and dissociates, the capsid angularizes, and the portal moves outward, interacting closely with the capsid shell. These transformations may provide a basis for the development of drugs to prevent HSV-1 infections.


2020 ◽  
Author(s):  
Michael H C Buch ◽  
William W Newcomb ◽  
Dennis C Winkler ◽  
Alasdair C Steven ◽  
J Bernard Heymann

Herpes simplex virus type 1 (HSV-1) requires seven proteins to package its genome through a vertex in its capsid, one of which is the portal protein, pUL6. The portal protein is also thought to facilitate assembly of the procapsid. While the portal has been visualized in mature capsids, we aimed to elucidate its role in the assembly and maturation of procapsids using cryo-electron tomography. We identified the portal vertex in individual procapsids, calculated a subtomogram average, and compared that with the portal vertex in empty mature capsids (A-capsids). The resulting maps show the portal on the interior surface with its narrower end facing outwards, while maintaining close contact with the capsid shell. In the procapsid, the portal is embedded in the underlying scaffold, suggesting that assembly involves a portal - scaffold complex. During maturation, the capsid shell angularizes with a corresponding outward movement of the vertices. We found that in A-capsids, the portal translocates further than the adjacent capsomers and strengthens its contacts with the capsid shell. Our methodology also allowed us to determine the number of portal vertices in each capsid, with most having one per capsid, but some none or two, and rarely three. The predominance of a single portal per capsid supports facilitation of the assembly of the procapsid.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Oliver W Bayfield ◽  
Alasdair C Steven ◽  
Alfred A Antson

The portal protein is a key component of many double-stranded DNA viruses, governing capsid assembly and genome packaging. Twelve subunits of the portal protein define a tunnel, through which DNA is translocated into the capsid. It is unknown how the portal protein functions as a gatekeeper, preventing DNA slippage, whilst allowing its passage into the capsid, and how these processes are controlled. A cryo-EM structure of the portal protein of thermostable virus P23-45, determined in situ in its procapsid-bound state, indicates a mechanism that naturally safeguards the virus against genome loss. This occurs via an inversion of the conformation of the loops that define the constriction in the central tunnel, accompanied by a hydrophilic–hydrophobic switch. The structure also shows how translocation of DNA into the capsid could be modulated by a changing mode of protein–protein interactions between portal and capsid, across a symmetry-mismatched interface.


2020 ◽  
Vol 118 (3) ◽  
pp. 156a
Author(s):  
Mehrnaz Mojtabavi ◽  
Sandra Greive ◽  
Alfred Antson ◽  
Meni Wanunu

2019 ◽  
Vol 6 (1) ◽  
pp. 141-160 ◽  
Author(s):  
Corynne L. Dedeo ◽  
Gino Cingolani ◽  
Carolyn M. Teschke

Tailed, double-stranded DNA bacteriophages provide a well-characterized model system for the study of viral assembly, especially for herpesviruses and adenoviruses. A wealth of genetic, structural, and biochemical work has allowed for the development of assembly models and an understanding of the DNA packaging process. The portal complex is an essential player in all aspects of bacteriophage and herpesvirus assembly. Despite having low sequence similarity, portal structures across bacteriophages share the portal fold and maintain a conserved function. Due to their dynamic role, portal proteins are surprisingly plastic, and their conformations change for each stage of assembly. Because the maturation process is dependent on the portal protein, researchers have been working to validate this protein as a potential antiviral drug target. Here we review recent work on the role of portal complexes in capsid assembly, including DNA packaging, as well as portal ring assembly and incorporation and analysis of portal structures.


2019 ◽  
Author(s):  
Oliver W. Bayfield ◽  
Alasdair C. Steven ◽  
Alfred A. Antson

The portal protein is a key component of many double-stranded DNA viruses, governing capsid assembly and genome packaging. Twelve subunits of the portal protein form a ring with a central tunnel, through which DNA is translocated into the capsid. It is unknown how the portal protein functions as a gatekeeper, preventing DNA slippage, whilst allowing its passage into the capsid through its central tunnel, and how these processes can be controlled by capsid and motor proteins. A cryo-EM structure of a portal protein, determined in situ for immature capsids of thermostable bacteriophage P23-45, suggests how domain adjustments can be coupled with a switching of properties of the DNA tunnel. Of particular note is an inversion of the conformation of portal loops which define the tunnel’s constriction, accompanied by a switching of surface properties from hydrophobic to hydrophilic. These observations indicate how translocation of DNA into the viral capsid can be modulated by changes in the properties and size of the central tunnel and how the changing pattern of protein–capsid interactions across a symmetry-mismatched interface can facilitate these dynamic processes.


Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 443 ◽  
Author(s):  
Cyril Alexander Frantzen ◽  
Helge Holo

Lactococcus lactis is one of the most important bacteria in dairy fermentations, being used in the production of cheese and buttermilk. The processes are vulnerable to phage attacks, and undefined mixtures of lactococcal strains are often used to reduce the risk of bacteriophage caused fermentation failure. Other preventive measures include culture rotation to prevent phage build-up and phage monitoring. Phage diversity, rather than quantity, is the largest threat to fermentations using undefined mixed starter cultures. We have developed a method for culture independent diversity analysis of lytic bacteriophages of the 936 group, the phages most commonly found in dairies. Using, as a target, a highly variable region of the portal protein gene, we demonstrate an unprecedented diversity and the presence of new 936 phages in samples taken from cheese production. The method should be useful to the dairy industry and starter culture manufacturers in their efforts to reduce phage problems.


Virology ◽  
2019 ◽  
Vol 529 ◽  
pp. 205-215 ◽  
Author(s):  
Daniela (Dana) Dünn-Kittenplon ◽  
Inna Kalt ◽  
Jean-Paul (Moshe) Lellouche ◽  
Ronit Sarid

Sign in / Sign up

Export Citation Format

Share Document