ring polymer molecular dynamics
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 37)

H-INDEX

34
(FIVE YEARS 4)

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7250
Author(s):  
Yukinobu Takahashi ◽  
Yu Hashimoto ◽  
Kohei Saito ◽  
Toshiyuki Takayanagi

The dissociative photodetachment dynamics of the oxalate anion, C2O4H− + hν → CO2 + HOCO + e−, were theoretically studied using the on-the-fly path-integral and ring-polymer molecular dynamics methods, which can account for nuclear quantum effects at the density-functional theory level in order to compare with the recent experimental study using photoelectron–photofragment coincidence spectroscopy. To reduce computational time, the force acting on each bead of ring-polymer was approximately calculated from the first and second derivatives of the potential energy at the centroid position of the nuclei beads. We find that the calculated photoelectron spectrum qualitatively reproduces the experimental spectrum and that nuclear quantum effects are playing a role in determining spectral widths. The calculated coincidence spectrum is found to reasonably reproduce the experimental spectrum, indicating that a relatively large energy is partitioned into the relative kinetic energy between the CO2 and HOCO fragments. This is because photodetachment of the parent anion leads to Franck–Condon transition to the repulsive region of the neutral potential energy surface. We also find that the dissociation dynamics are slightly different between the two isomers of the C2O4H− anion with closed- and open-form structures.


2021 ◽  
Author(s):  
Xinyang Li ◽  
Pengfei Huo

<div>We use the ab-initio ring polymer molecular dynamics (RPMD) approach to investigate tunneling controlled reactions in methylhydroxycarbene. Nuclear tunneling effects enable molecules to overcome the barriers which can not be overcome classically. Under low-temperature conditions, intrinsic quantum tunneling effects canfacilitate the chemical reaction in a pathway that is neither favored thermodynamically nor kinetically. This</div><div>behavior is referred to as the tunneling controlled chemical reaction and regarded as the third paradigm of chemical</div><div>reaction controls. In this work, we use the ab-initio RPMD approach to incorporate the tunneling effects in our quantum dynamics simulations. The reaction kinetics of two competitive reaction pathways at various temperatures are investigated with the Kohn-Sham density functional theory (KS-DFT) on-the-fly molecular dynamics simulations and the ring polymer quantization of the nuclei. The reaction rate constants obtained here agree extremely well with the experimentally measured rates. We demonstrate the feasibility of using ab-initio RPMD rate calculations in a realistic molecular system, and provide an interesting and important example for future investigations on reaction mechanisms dominated by quantum tunneling effects.</div>


2021 ◽  
Author(s):  
Xinyang Li ◽  
Pengfei Huo

<div>We use the ab-initio ring polymer molecular dynamics (RPMD) approach to investigate tunneling controlled reactions in methylhydroxycarbene. Nuclear tunneling effects enable molecules to overcome the barriers which can not be overcome classically. Under low-temperature conditions, intrinsic quantum tunneling effects canfacilitate the chemical reaction in a pathway that is neither favored thermodynamically nor kinetically. This</div><div>behavior is referred to as the tunneling controlled chemical reaction and regarded as the third paradigm of chemical</div><div>reaction controls. In this work, we use the ab-initio RPMD approach to incorporate the tunneling effects in our quantum dynamics simulations. The reaction kinetics of two competitive reaction pathways at various temperatures are investigated with the Kohn-Sham density functional theory (KS-DFT) on-the-fly molecular dynamics simulations and the ring polymer quantization of the nuclei. The reaction rate constants obtained here agree extremely well with the experimentally measured rates. We demonstrate the feasibility of using ab-initio RPMD rate calculations in a realistic molecular system, and provide an interesting and important example for future investigations on reaction mechanisms dominated by quantum tunneling effects.</div>


Sign in / Sign up

Export Citation Format

Share Document