turan problems
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 21)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 345 (1) ◽  
pp. 112628
Author(s):  
Zixiang Xu ◽  
Yifan Jing ◽  
Gennian Ge
Keyword(s):  

2021 ◽  
Vol 13 (2) ◽  
pp. 356-366
Author(s):  
Dániel Gerbner ◽  
Abhishek Methuku ◽  
Dániel T. Nagy ◽  
Balázs Patkós ◽  
Máté Vizer

Abstract In this short note we consider the oriented vertex Turán problem in the hypercube: for a fixed oriented graph F → \vec F , determine the maximum cardinality e x v ( F → , Q → n ) e{x_v}\left( {\vec F,{{\vec Q}_n}} \right) of a subset U of the vertices of the oriented hypercube Q → n {\vec Q_n} such that the induced subgraph Q → n [ U ] {\vec Q_n}\left[ U \right] does not contain any copy of F → \vec F . We obtain the exact value of e x v ( P k , →   Q n → ) e{x_v}\left( {\overrightarrow {{P_k},} \,\overrightarrow {{Q_n}} } \right) for the directed path P k → \overrightarrow {{P_k}} , the exact value of e x v ( V 2 → ,   Q n → ) e{x_v}\left( {\overrightarrow {{V_2}} ,\,\overrightarrow {{Q_n}} } \right) for the directed cherry V 2 → \overrightarrow {{V_2}} and the asymptotic value of e x v ( T → , Q n → ) e{x_v}\left( {\overrightarrow T ,\overrightarrow {{Q_n}} } \right) for any directed tree T → \vec T .


10.37236/9603 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Ervin Győri ◽  
Addisu Paulos ◽  
Nika Salia ◽  
Casey Tompkins ◽  
Oscar Zamora

In a generalized Turán problem, we are given graphs $H$ and $F$ and seek to maximize the number of copies of $H$ in an $n$-vertex graph not containing $F$ as a subgraph. We consider generalized Turán problems where the host graph is planar. In particular, we obtain the order of magnitude of the maximum number of copies of a fixed tree in a planar graph containing no even cycle of length at most $2\ell$, for all $\ell$, $\ell \geqslant 1$. We also determine the order of magnitude of the maximum number of cycles of a given length in a planar $C_4$-free graph. An exact result is given for the maximum number of $5$-cycles in a $C_4$-free planar graph. Multiple conjectures are also introduced.  


Author(s):  
Zixiang Xu ◽  
Tao Zhang ◽  
Gennian Ge
Keyword(s):  

2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Shuliang Bai ◽  
Linyuan Lu

We consider the Turán problems of $2$-edge-colored graphs. A $2$-edge-colored graph $H=(V, E_r, E_b)$ is a triple consisting of the vertex set $V$, the set of red edges $E_r$ and the set of blue edges $E_b$ where $E_r$ and $E_b$ do not have to be disjoint. The Turán density $\pi(H)$ of $H$ is defined to be $\lim_{n\to\infty} \max_{G_n}h_n(G_n)$, where $G_n$ is chosen among all possible $2$-edge-colored graphs on $n$ vertices containing no $H$ as a sub-graph and $h_n(G_n)=(|E_r(G)|+|E_b(G)|)/\binom{n}{2}$ is the formula to measure the edge density of $G_n$. We will determine the Turán densities of all $2$-edge-colored bipartite graphs. We also give an important application on the Turán problems of $\{2, 3\}$-hypergraphs.


2021 ◽  
Vol 42 (4) ◽  
pp. 487-494
Author(s):  
Zhenyu Ni ◽  
Liying Kang ◽  
Erfang Shan
Keyword(s):  

2021 ◽  
Vol 35 (3) ◽  
pp. 2170-2191
Author(s):  
Sam Spiro ◽  
Jacques Verstraëte

2021 ◽  
Vol 177 ◽  
pp. 105329
Author(s):  
Peter Frankl ◽  
Hao Huang ◽  
Vojtěch Rödl
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document