flexible fibers
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 34)

H-INDEX

16
(FIVE YEARS 5)

Author(s):  
Agnieszka M. Slowicka ◽  
Nan Xue ◽  
Pawel Sznajder ◽  
Janine K Nunes ◽  
Howard A Stone ◽  
...  

Abstract Three-dimensional dynamics of flexible fibers in shear flow are studied numerically, with a qualitative comparison to experiments. Initially, the fibers are straight, with different orientations with respect to the flow. By changing the rotation speed of a shear rheometer, we change the ratio A of bending to shear forces. We observe fibers in the flow-vorticity plane, which gives insight into the motion out of the shear plane. The numerical simulations of moderately flexible fibers show that they rotate along effective Jeffery orbits, and therefore the fiber orientation rapidly becomes very close to the flow-vorticity plane, on average close to the flow direction, and the fiber remains in an almost straight configuration for a long time. This ``ordering'' of fibers is temporary since they alternately bend and straighten out while tumbling. We observe numerically and experimentally that if the fibers are initially in the compressional region of the shear flow, they can undergo a compressional buckling, with a pronounced deformation of shape along their whole length during a short time, which is in contrast to the typical local bending that originates over a long time from the fiber ends. We identify differences between local and compressional bending and discuss their competition, which depends on the initial orientation of the fiber and the bending stiffness ratio A. There are two main finding. First, the compressional buckling is limited to a certain small range of the initial orientations, excluding those from the flow-vorticity plane. Second, since fibers straighten out in the flow-vorticity plane while tumbling, the compressional buckling is transient - it does not appear for times longer than 1/4 of the Jeffery period. For larger times, bending of fibers is always driven by their ends.


2021 ◽  
pp. 117094
Author(s):  
Lixiang Zhong ◽  
Dandan Xu ◽  
Yiyang Jiang ◽  
Yu Guo

2021 ◽  
Author(s):  
Noam Badt ◽  
Ori Katz

Abstract Fiber-based micro-endoscopes are a critically important tool for minimally-invasive deep-tissue imaging. However, the state-of-the-art micro-endoscopes cannot perform three-dimensional imaging through dynamically-bent fibers without the use of bulky optical elements such as lenses and scanners at the distal end, increasing the footprint and tissue-damage. Great efforts have been invested in developing approaches that avoid distal bulky optical elements. However, the fundamental barrier of dynamic optical wavefront-distortions in propagation through flexible fibers, limits current approaches to nearly-static or non-flexible fibers. Here, we present an approach that allows holographic 3D bend-insensitive, coherence-gated, micro-endoscopic imaging, using commercially available multi-core fibers (MCFs). We achieve this by adding a miniature partially-reflecting mirror to the distal fiber-tip, allowing to perform low-coherence full-field phase-shifting holography. We demonstrate widefield diffraction-limited reflection imaging of amplitude and phase targets through dynamically bent fibers at video-rates. Our approach holds potential for label-free investigations of dynamic samples


2021 ◽  
Author(s):  
Marc-Joseph Antonini ◽  
Atharva Sahasrabudhe ◽  
Anthony Tabet ◽  
Miriam Schwalm ◽  
Dekel Rosenfeld ◽  
...  

Fiber drawing enables scalable fabrication of multifunctional flexible fibers that integrate electrical, optical and microfluidic modalities to record and modulate neural activity. Constraints on thermomechanical properties of materials, however, have prevented integrated drawing of metal electrodes with low-loss polymer waveguides for concurrent electrical recording and optical neuromodulation. Here we introduce two fabrication approaches: (1) an iterative thermal drawing with a soft, low melting temperature (Tm) metal indium, and (2) a metal convergence drawing with traditionally non-drawable high Tm metal tungsten. Both approaches deliver multifunctional flexible neural interfaces with low-impedance metallic electrodes and low-loss waveguides, capable of recording optically-evoked and spontaneous neural activity in mice over several weeks. We couple these fibers with a light-weight mechanical microdrive (1g) that enables depth-specific interrogation of neural circuits in mice following chronic implantation. Finally, we demonstrate the compatibility of these fibers with magnetic resonance imaging (MRI) and apply them to visualize the delivery of chemical payloads through the integrated channels in real time. Together, these advances expand the domains of application of the fiber-based neural probes in neuroscience and neuroengineering.


Author(s):  
Shuying Shi ◽  
Qing Dong ◽  
Yuping Wang ◽  
Xiaoqian Zhang ◽  
Silun Zhu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 64 (6) ◽  
pp. 2025-2034
Author(s):  
Matthew W Schramm ◽  
Mehari Z. Tekeste ◽  
Brian L Steward

HighlightsSimulation of uniaxial compression was performed with flexible fibers modeled in DEM.Bond-specific DEM parameters were found to be sensitive in uniaxial compression.A calibration technique that is not plunger-dependent is shown and validated.Abstract. To accurately simulate a discrete element method (DEM) model, the material properties must be calibrated to reproduce bulk material behavior. In this study, a method was developed to calibrate DEM parameters for bulk fibrous materials using uniaxial compression. Wheat straw was cut to 100.2 mm lengths. A 227 mm diameter cylindrical container was loosely filled with the cut straw. The material was pre-compressed to 1 kPa. A plunger (50, 150, or 225 mm diameter) was then lowered onto the compressed straw at a rate of 15 mm s-1. This experimental procedure was simulated using a DEM model for different material properties to generate a simulated design of experiment (DOE). The simulated plunger had a travel rate of 40 mm s-1. The contact Young’s modulus, bond Young’s modulus, and particle-to-particle friction DEM parameters were found to be statistically significant in the prediction of normal forces on the plunger in the uniaxial compression test. The DEM calibration procedure was used to approximate the mean laboratory results of wheat straw compression with root mean square (RMS) percent errors of 3.77%, 3.02%, and 13.90% for the 50, 150, and 225 mm plungers, respectively. Keywords: Calibration, DEM, DOE, Flexible DEM particle, Uniaxial compression, Wheat straw.


Soft Matter ◽  
2021 ◽  
Author(s):  
Nan Xue ◽  
Janine Nunes ◽  
Howard A Stone

We report an experimental study of the shear-induced migration of flexible fibers in suspensions confined between two parallel plates. Non-Brownian fiber suspensions are placed and imaged in a rheo-microscopy setup,...


Sign in / Sign up

Export Citation Format

Share Document