capacitive micromachined ultrasonic transducer
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 48)

H-INDEX

16
(FIVE YEARS 4)

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1180
Author(s):  
Hongliang Wang ◽  
Xiao Huang ◽  
Lijun Yu ◽  
Qi Ding ◽  
Hanqiang Zhang ◽  
...  

Capacitive micromachined ultrasonic transducer (CMUT) is an ultrasonic transducer based on the microelectromechanical system (MEMS). Wideband CMUT has good application prospects in ultrasonic imaging, ultrasonic identification, flow measurement, and nondestructive testing due to its excellent characteristics. This paper studies the method of increasing the bandwidth of the CMUT, proposes the structure of the wideband CMUT with a hybrid cell structure, and analyzes the design principles and characteristics of the wideband CMUT structure. By changing the cell spacing and the number of cells of different sizes composing the CMUT, we analyze the simulation of the effect of the spacing and number on the CMUT bandwidth, thereby optimizing the bandwidth characteristics of the CMUT. Next, the selection principle of the main structural parameters of the wideband CMUT is analyzed. According to the proposed principle, the CMUT in the air and water are designed and simulated. The results prove that both the air and water CMUT meet the design requirements. The design rules obtained in this paper can provide theoretical guidance for the selection of the main structural parameters of the wideband CMUT.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1127
Author(s):  
Xiao Huang ◽  
Hongliang Wang ◽  
Lijun Yu

The capacitive micromachined ultrasonic transducer (CMUT), as a new acoustic-electric conversion element, has a promising application prospect. In this paper, the structure of the vacuum capacitive micromachined ultrasonic transducer is presented, and its performance-influencing factors are investigated. Firstly, the influencing factors of the performance parameters of the vacuum CMUT are analyzed theoretically based on the circular plate model and flat plate capacitance model, and the design principles of the structural parameters of the CMUT cell are proposed. Then, the finite element simulation software COMSOL Multiphysics is used to construct CMUT cell models with different membrane materials, membrane shapes, membrane radius thicknesses, and cavity heights for simulation verification. The results show that both the membrane parameters and the cavity heights affect the performance parameters of the Vacuum CMUT. In order to improve the efficiency of the CMUT, materials with low bending stiffness should be selected, and the filling factor of the membrane should be increased. In order to achieve high-transmission sound pressure, a smaller radius thickness and a larger cavity height should be selected. To achieve high reception sensitivity, a larger membrane radius thickness and a smaller cavity height should be selected. In order to obtain high fractional bandwidth, a larger membrane radius thickness should be selected. The results of this paper provide a basis for the design of Vacuum CMUT cell structure.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 963
Author(s):  
Yu Pei ◽  
Guojun Zhang ◽  
Yu Zhang ◽  
Wendong Zhang

Ultrasound computed tomography (USCT) systems based on capacitive micromachined ultrasonic transducer (CMUT) arrays have a wide range of application prospects. For this paper, a high-precision image reconstruction method based on the propagation path of ultrasound in breast tissue are designed for the CMUT ring array; that is, time-reversal algorithms and FBP algorithms are respectively used to reconstruct sound speed distribution and acoustic attenuation distribution. The feasibility of this reconstruction method is verified by numerical simulation and breast model experiments. According to reconstruction results, sound speed distribution reconstruction deviation can be reduced by 53.15% through a time-reversal algorithm based on wave propagation theory. The attenuation coefficient distribution reconstruction deviation can be reduced by 61.53% through FBP based on ray propagation theory. The research results in this paper will provide key technological support for a new generation of ultrasound computed tomography systems.


Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tian Zhang ◽  
Wendong Zhang ◽  
XingLing Shao ◽  
Yang Wu

Purpose Because of the small size and high integration of capacitive micromachined ultrasonic transducer (CMUT) component, it can be made into large-scale array, but this lead to high hardware complexity, so the purpose of this paper is to use less elements to achieve better imaging results. In this research, an optimized sparse array is studied, which can suppress the side lobe and reduce the imaging artifacts compared with the equispaced sparse array with the same number of elements. Design/methodology/approach Genetic algorithm is used to sparse the CMUT linear array, and Kaiser window apodization is added to reduce imaging artifacts, the beam pattern and peak-to-side lobe ratio are calculated, point targets imaging comparisons are performed. Furthermore, a 256-elements CMUT linear array is used to carry out the imaging experiment of embedded mass and forearm blood vessel, and the imaging results are compared quantitatively. Findings Through the imaging comparison of embedded mass and forearm blood vessel, the feasibility of optimized sparse array of CMUT is verified, and the purpose of reducing the hardware complexity is achieved. Originality/value This research provides a basis for the large-scale CMUT array to reduce the hardware complexity and the amount of calculation. At present, the CMUT array has been used in medical ultrasound imaging and has huge market potential.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 714
Author(s):  
Jiujiang Wang ◽  
Xin Liu ◽  
Yuanyu Yu ◽  
Yao Li ◽  
Ching-Hsiang Cheng ◽  
...  

Analytical modeling of capacitive micromachined ultrasonic transducer (CMUT) is one of the commonly used modeling methods and has the advantages of intuitive understanding of the physics of CMUTs and convergent when modeling of collapse mode CMUT. This review article summarizes analytical modeling of the collapse voltage and shows that the collapse voltage of a CMUT correlates with the effective gap height and the electrode area. There are analytical expressions for the collapse voltage. Modeling of the membrane deflections are characterized by governing equations from Timoshenko, von Kármán equations and the 2D plate equation, and solved by various methods such as Galerkin’s method and perturbation method. Analytical expressions from Timoshenko’s equation can be used for small deflections, while analytical expression from von Kármán equations can be used for both small and large deflections.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 684
Author(s):  
Tian Zhang ◽  
Wendong Zhang ◽  
Xingling Shao ◽  
Yuhua Yang ◽  
Zhihao Wang ◽  
...  

Capacitive micromachined ultrasonic transducer (CMUT) is an ultrasonic transducer based on the microelectromechanical system (MEMS). CMUT elements are easily made into a high-density array, which will increase the hardware complexity. In order to reduce the number of active channels, this paper studies the grating lobes generated by CMUT periodic sparse array (PSA) pairs. Through the design of active element positions in the transmitting and receiving processes, the simulation results of effective aperture and beam patterns show that the common grating lobes (CGLs) generated by the transmit and receive array are eliminated. On the basis of point targets imaging, a CMUT linear array with 256 elements is used to carry out the PSA pairs experiment. Under the same sparse factor (SF), the optimal sparse array configuration can be selected to reduce the imaging artifacts. This conclusion is of great significance for the application of CMUT in three-dimensional ultrasound imaging.


2021 ◽  
Author(s):  
Gurpreet Singh Gill ◽  
Sanjay Kumar ◽  
Ravindra Mukhiya ◽  
Vinod Kumar Khanna

Abstract Capacitive Micromachined Ultrasonic Transducer (CMUT) provides an alternative to commercial piezoelectric-based ultrasonic transducers due to its wide bandwidth, improved efficiency, sensitivity, and design flexibility [1, 2]. In this paper, Finite Element Method-based design and simulations of circular capacitive micromachined ultrasonic transducer (CMUT) is presented. The FEM simulation of air-coupled CMUT was accomplished by using MEMCAD tools CoventorWare® and COMSOL™. The resonance frequency of 3.9 MHz was achieved for the designed circular CMUT device. A favourable agreement was found for the resonance frequency and pull-in voltage of the device using MEMSCAD tools and analytical calculations. For the proposed CMUT design, a circular cavity will be formed inside the glass substrate. Then, a free-standing membrane will be released using active layer of silicon-on-insulator (SOI) wafer. The bulk silicon of SOI wafer will be removed after bonding it on the glass substrate using anodic bonding technique as described in fabrication process flow for CMUT.


Sign in / Sign up

Export Citation Format

Share Document