dusty galaxies
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 23)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Vol 923 (2) ◽  
pp. 215
Author(s):  
Caitlin M. Casey ◽  
Jorge A. Zavala ◽  
Sinclaire M. Manning ◽  
Manuel Aravena ◽  
Matthieu Béthermin ◽  
...  

Abstract We present the characteristics of 2 mm selected sources from the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey conducted to date, the Mapping Obscuration to Reionization with ALMA (MORA) survey covering 184 arcmin2 at 2 mm. Twelve of 13 detections above 5σ are attributed to emission from galaxies, 11 of which are dominated by cold dust emission. These sources have a median redshift of 〈 z 2 mm 〉 = 3.6 − 0.3 + 0.4 primarily based on optical/near-infrared photometric redshifts with some spectroscopic redshifts, with 77% ± 11% of sources at z > 3 and 38% ± 12% of sources at z > 4. This implies that 2 mm selection is an efficient method for identifying the highest-redshift dusty star-forming galaxies (DSFGs). Lower-redshift DSFGs (z < 3) are far more numerous than those at z > 3 yet are likely to drop out at 2 mm. MORA shows that DSFGs with star formation rates in excess of 300 M ⊙ yr−1 and a relative rarity of ∼10−5 Mpc−3 contribute ∼30% to the integrated star formation rate density at 3 < z < 6. The volume density of 2 mm selected DSFGs is consistent with predictions from some cosmological simulations and is similar to the volume density of their hypothesized descendants: massive, quiescent galaxies at z > 2. Analysis of MORA sources’ spectral energy distributions hint at steeper empirically measured dust emissivity indices than reported in typical literature studies, with 〈 β 〉 = 2.2 − 0.4 + 0.5 . The MORA survey represents an important step in taking census of obscured star formation in the universe’s first few billion years, but larger area 2 mm surveys are needed to more fully characterize this rare population and push to the detection of the universe’s first dusty galaxies.


Author(s):  
T. Trombetti ◽  
C. Burigana ◽  
M. Bonato ◽  
D. Herranz ◽  
G. De Zotti ◽  
...  

2021 ◽  
Vol 908 (2) ◽  
pp. 166
Author(s):  
B. Peng ◽  
C. Lamarche ◽  
G. J. Stacey ◽  
T. Nikola ◽  
A. Vishwas ◽  
...  

2021 ◽  
Vol 908 (2) ◽  
pp. 238
Author(s):  
J. McKinney ◽  
L. Armus ◽  
A. Pope ◽  
T. Díaz-Santos ◽  
V. Charmandaris ◽  
...  

2020 ◽  
Vol 905 (2) ◽  
pp. 86 ◽  
Author(s):  
Justin S. Spilker ◽  
Manuel Aravena ◽  
Kedar A. Phadke ◽  
Matthieu Béthermin ◽  
Scott C. Chapman ◽  
...  

2020 ◽  
Vol 905 (2) ◽  
pp. 85 ◽  
Author(s):  
Justin S. Spilker ◽  
Kedar A. Phadke ◽  
Manuel Aravena ◽  
Matthieu Béthermin ◽  
Scott C. Chapman ◽  
...  

2020 ◽  
Vol 643 ◽  
pp. A8 ◽  
Author(s):  
C. Gruppioni ◽  
M. Béthermin ◽  
F. Loiacono ◽  
O. Le Fèvre ◽  
P. Capak ◽  
...  

Aims. We present the detailed characterisation of a sample of 56 sources serendipitously detected in ALMA band 7 as part of the ALMA Large Program to INvestigate CII at Early Times (ALPINE). These sources, detected in COSMOS and ECDFS, have been used to derive the total infrared luminosity function (LF) and to estimate the cosmic star formation rate density (SFRD) up to z ≃ 6. Methods. We looked for counterparts of the ALMA sources in all the available multi-wavelength (from HST to VLA) and photometric redshift catalogues. We also made use of deeper UltraVISTA and Spitzer source lists and maps to identify optically dark sources with no matches in the public catalogues. We used the sources with estimated redshifts to derive the 250 μm rest-frame and total infrared (8–1000 μm) LFs from z ≃ 0.5 to 6. Results. Our ALMA blind survey (860 μm flux density range: ∼0.3–12.5 mJy) allows us to further push the study of the nature and evolution of dusty galaxies at high-z, identifying luminous and massive sources to redshifts and faint luminosities never probed before by any far-infrared surveys. The ALPINE data are the first ones to sample the faint end of the infrared LF, showing little evolution from z ≃ 2.5 to z ≃ 6, and a “flat” slope up to the highest redshifts (i.e. 4.5 <  z <  6). The SFRD obtained by integrating the luminosity function remains almost constant between z ≃ 2 and z ≃ 6, and significantly higher than the optical or ultra-violet derivations, showing a significant contribution of dusty galaxies and obscured star formation at high-z. About 14% of all the ALPINE serendipitous continuum sources are found to be optically and near-infrared (near-IR) dark (to a depth Ks ∼ 24.9 mag). Six show a counterpart only in the mid-IR and no HST or near-IR identification, while two are detected as [C II] emitters at z ≃ 5. The six HST+near-IR dark galaxies with mid-IR counterparts are found to contribute about 17% of the total SFRD at z ≃ 5 and to dominate the high-mass end of the stellar mass function at z >  3.


2020 ◽  
Vol 499 (4) ◽  
pp. 4666-4686
Author(s):  
Lapo Fanciullo ◽  
Francisca Kemper ◽  
Peter Scicluna ◽  
Thavisha E Dharmawardena ◽  
Sundar Srinivasan

ABSTRACT The thermal emission of dust is one of the most important tracers of the interstellar medium: multiwavelength photometry in the far-infrared (FIR) and submillimetre (submm) can be fitted with a model, providing estimates of the dust mass. The fit results depend on the assumed value for FIR/submm opacity, which in most models – due to the scarcity, until recently, of experimental measurements – is extrapolated from shorter wavelengths. Lab measurements of dust analogues, however, show that FIR opacities are usually higher than the values used in models and depend on temperature, which suggests that dust mass estimates may be biased. To test the extent of this bias, we create multiwavelength synthetic photometry for dusty galaxies at different temperatures and redshifts, using experimental results for FIR/submm dust opacity and then we fit the synthetic data using standard dust models. We find that the dust masses recovered by typical models are overestimated by a factor of 2–20, depending on how the experimental opacities are treated. If the experimental dust samples are accurate analogues of interstellar dust, therefore, current dust masses are overestimated by up to a factor of 20. The implications for our understanding of dust, both Galactic and at high redshift, are discussed.


2020 ◽  
Vol 102 (4) ◽  
Author(s):  
Fiona McCarthy ◽  
Matthew C. Johnson

Sign in / Sign up

Export Citation Format

Share Document