endoscopic images
Recently Published Documents


TOTAL DOCUMENTS

411
(FIVE YEARS 145)

H-INDEX

21
(FIVE YEARS 10)

2022 ◽  
Vol 73 ◽  
pp. 103443
Author(s):  
Xudong Luo ◽  
Junhua Zhang ◽  
Zonggui Li ◽  
Ruiqi Yang

2022 ◽  
Author(s):  
Yan Ye ◽  
Xudong Luo ◽  
Qiong Nan ◽  
Yanhong Liu ◽  
Yinglei Miao ◽  
...  

Abstract The goal of treatment for ulcerative colitis is to achieve histological and endoscopic remission. Aiming at the problem that the observer will be affected by subjective factors in the endoscopic evaluation of ulcerative colitis and the cumbersome diagnosis process of histological images, this paper aims to develop a computer-assisted diagnosis system for real-time, objective diagnosis of endoscopic images and use the trained CNN model to predict histological images of patients with ulcerative colitis. Diagnosing endoscopic remission of ulcerative colitis, the accuracy of the CNN is 97.04% (95% CI,96.26%:97.62%). Diagnosing the severity of endoscopic inflammation in patients with ulcerative colitis, the accuracy of the CNN is 90.15% (95% CI, 89.49%:90.82%). The accuracy of predicting histological remission was 91.28%. The kappa coefficient between the CNN model and the biopsy results was 82.56%. The proposed computer-aided diagnosis system can effectively evaluate the inflammation of endoscopic images of patients with ulcerative colitis and predict the remission of histological images with high accuracy and consistency.


2022 ◽  
Vol 71 ◽  
pp. 103116
Author(s):  
Huijun Ding ◽  
Qian Cen ◽  
Xiaoyu Si ◽  
Zhanpeng Pan ◽  
Xiangdong Chen
Keyword(s):  

2022 ◽  
Vol 71 ◽  
pp. 103167
Author(s):  
Mingjian Sun ◽  
Lingyu Ma ◽  
Xiufeng Su ◽  
Xiaozhong Gao ◽  
Zichao Liu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 283
Author(s):  
Xiaoyuan Yu ◽  
Suigu Tang ◽  
Chak Fong Cheang ◽  
Hon Ho Yu ◽  
I Cheong Choi

The automatic analysis of endoscopic images to assist endoscopists in accurately identifying the types and locations of esophageal lesions remains a challenge. In this paper, we propose a novel multi-task deep learning model for automatic diagnosis, which does not simply replace the role of endoscopists in decision making, because endoscopists are expected to correct the false results predicted by the diagnosis system if more supporting information is provided. In order to help endoscopists improve the diagnosis accuracy in identifying the types of lesions, an image retrieval module is added in the classification task to provide an additional confidence level of the predicted types of esophageal lesions. In addition, a mutual attention module is added in the segmentation task to improve its performance in determining the locations of esophageal lesions. The proposed model is evaluated and compared with other deep learning models using a dataset of 1003 endoscopic images, including 290 esophageal cancer, 473 esophagitis, and 240 normal. The experimental results show the promising performance of our model with a high accuracy of 96.76% for the classification and a Dice coefficient of 82.47% for the segmentation. Consequently, the proposed multi-task deep learning model can be an effective tool to help endoscopists in judging esophageal lesions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wen Pan ◽  
Xujia Li ◽  
Weijia Wang ◽  
Linjing Zhou ◽  
Jiali Wu ◽  
...  

Abstract Background Development of a deep learning method to identify Barrett's esophagus (BE) scopes in endoscopic images. Methods 443 endoscopic images from 187 patients of BE were included in this study. The gastroesophageal junction (GEJ) and squamous-columnar junction (SCJ) of BE were manually annotated in endoscopic images by experts. Fully convolutional neural networks (FCN) were developed to automatically identify the BE scopes in endoscopic images. The networks were trained and evaluated in two separate image sets. The performance of segmentation was evaluated by intersection over union (IOU). Results The deep learning method was proved to be satisfying in the automated identification of BE in endoscopic images. The values of the IOU were 0.56 (GEJ) and 0.82 (SCJ), respectively. Conclusions Deep learning algorithm is promising with accuracies of concordance with manual human assessment in segmentation of the BE scope in endoscopic images. This automated recognition method helps clinicians to locate and recognize the scopes of BE in endoscopic examinations.


2021 ◽  
Author(s):  
Kevin Huang ◽  
Digesh Chitrakar ◽  
Wenfan Jiang ◽  
Yun-Hsuan Su
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Xiaoling Chen ◽  
Kuiling Zhang ◽  
Shuying Lin ◽  
Kai Feng Dai ◽  
Yang Yun

Purpose. In order to resolve the situation of high missed diagnosis rate and high misdiagnosis rate of the pathological analysis of the gastrointestinal endoscopic images by experts, we propose an automatic polyp detection algorithm based on Single Shot Multibox Detector (SSD). Method. In the paper, SSD is based on VGG-16, the fully connected layer is changed to a convolutional layer, and four convolutional layers with successively decreasing scales are added as a new network structure. In order to verify the practicability, it is not only compared with manual polyp detection but also with Mask R-CNN. Results. Multiple experimental results show that the mean Average Precision (mAP) of the SSD network is 95.74%, which is 12.4% higher than the manual detection and 5.7% higher than the Mask R-CNN. When detecting a single frame of image, the detection speed of SSD is 8.41 times that of manual detection. Conclusion. Based on the traditional pattern recognition algorithm and the target detection algorithm using deep learning, we select a variety of algorithms to identify and classify polyps to achieve efficient detection results. Our research demonstrates that deep learning has a lot of room for development in the field of gastrointestinal image recognition.


Sign in / Sign up

Export Citation Format

Share Document