nucleic acid binding proteins
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 27)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Friederike L. Pennemann ◽  
Assel Mussabekova ◽  
Christian Urban ◽  
Alexey Stukalov ◽  
Line Lykke Andersen ◽  
...  

AbstractThe cell intrinsic antiviral response of multicellular organisms developed over millions of years and critically relies on the ability to sense and eliminate viral nucleic acids. Here we use an affinity proteomics approach in evolutionary distant species (human, mouse and fly) to identify proteins that are conserved in their ability to associate with diverse viral nucleic acids. This approach shows a core of orthologous proteins targeting viral genetic material and species-specific interactions. Functional characterization of the influence of 181 candidates on replication of 6 distinct viruses in human cells and flies identifies 128 nucleic acid binding proteins with an impact on virus growth. We identify the family of TAO kinases (TAOK1, −2 and −3) as dsRNA-interacting antiviral proteins and show their requirement for type-I interferon induction. Depletion of TAO kinases in mammals or flies leads to an impaired response to virus infection characterized by a reduced induction of interferon stimulated genes in mammals and impaired expression of srg1 and diedel in flies. Overall, our study shows a larger set of proteins able to mediate the interaction between viral genetic material and host factors than anticipated so far, attesting to the ancestral roots of innate immunity and to the lineage-specific pressures exerted by viruses.


PLoS Biology ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. e3001428
Author(s):  
Kevin J. Forsberg ◽  
Danica T. Schmidtke ◽  
Rachel Werther ◽  
Ruben V. Uribe ◽  
Deanna Hausman ◽  
...  

To overcome CRISPR-Cas defense systems, many phages and mobile genetic elements (MGEs) encode CRISPR-Cas inhibitors called anti-CRISPRs (Acrs). Nearly all characterized Acrs directly bind Cas proteins to inactivate CRISPR immunity. Here, using functional metagenomic selection, we describe AcrIIA22, an unconventional Acr found in hypervariable genomic regions of clostridial bacteria and their prophages from human gut microbiomes. AcrIIA22 does not bind strongly to SpyCas9 but nonetheless potently inhibits its activity against plasmids. To gain insight into its mechanism, we obtained an X-ray crystal structure of AcrIIA22, which revealed homology to PC4-like nucleic acid–binding proteins. Based on mutational analyses and functional assays, we deduced that acrIIA22 encodes a DNA nickase that relieves torsional stress in supercoiled plasmids. This may render them less susceptible to SpyCas9, which uses free energy from negative supercoils to form stable R-loops. Modifying DNA topology may provide an additional route to CRISPR-Cas resistance in phages and MGEs.


2021 ◽  
Author(s):  
Brendan Antiochos ◽  
Paride Fenaroli ◽  
Avi Rosenberg ◽  
Alan Baer ◽  
Jungsan Sohn ◽  
...  

Nucleic acid binding proteins are frequently targeted as autoantigens in systemic lupus erythematosus (SLE) and other interferon (IFN)-linked rheumatic diseases. The AIM-like receptors (ALRs) are IFNinducible innate sensors that form supramolecular assemblies along double-stranded DNA of various origins. Here, we identify the ALR Absent in melanoma 2 (AIM2) as a novel autoantigen in SLE, with similar properties to the established ALR autoantigen interferon-inducible protein 16 (IFI16). Our SLE cohort revealed a frequent co-occurrence of anti-AIM2, anti-IFI16 and anti-DNA antibodies, and higher clinical measures of disease activity in patients positive for antibodies against these ALRs. We examined neutrophil extracellular traps (NETs) as DNA scaffolds on which these antigens might interact in a proimmune context, finding that both ALRs bind NETs in vitro and in SLE renal tissues. We demonstrate that ALR binding causes NETs to resist degradation by DNase I, suggesting a mechanism whereby extracellular ALR-NET interactions may promote sustained IFN signaling. Our work suggests that extracellular ALRs bind NETs, leading to DNase resistant nucleoprotein fibers that are targeted as autoantigens in SLE.


2021 ◽  
Author(s):  
Debayan Dey ◽  
Suryanarayanarao Ramakumar ◽  
Graeme L Conn

The emergence of new viral infections and drug resistant bacteria urgently necessitates expedient therapeutic development. Repurposing and redesign of existing drugs against different targets is one potential way in which to accelerate this process. Suramin was initially developed as a successful anti-parasitic drug, but has also shown promising antiviral and antibacterial activities. However, due to its high conformational flexibility and negative charge, suramin is considered quite promiscuous towards positively charged sites within nucleic acid binding proteins. Although some suramin analogs have been developed against specific targets, only limited structure activity relationship (SAR) studies were performed, and virtual screening has yet to be used to identify more specific inhibitor(s) based on its scaffold. Using available structures, we investigated suramin's target diversity, confirming that suramin preferentially binds to protein pockets which are both positively charged and enriched in aromatic or leucine residues. Further, suramin's high conformational flexibility allows adaptation to structurally diverse binding surfaces. From this platform, we developed a framework for structure- and docking-guided elaboration of suramin analog scaffolds using virtual screening of suramin and heparin analogs against a panel of diverse therapeutically relevant viral and bacterial protein targets. Use of this new framework to design potentially specific suramin analogs is exemplified using the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and nucleocapsid protein, identifying leads that might inhibit a wide range of coronaviruses. The approach presented here establishes a new computational framework for designing suramin analogs against different bacterial and viral targets and repurposing existing drugs for more specific inhibitory activity.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 315
Author(s):  
Kwanuk Lee ◽  
Dario Leister ◽  
Tatjana Kleine

Plastid gene expression (PGE) is essential for chloroplast biogenesis and function and, hence, for plant development. However, many aspects of PGE remain obscure due to the complexity of the process. A hallmark of nuclear-organellar coordination of gene expression is the emergence of nucleus-encoded protein families, including nucleic-acid binding proteins, during the evolution of the green plant lineage. One of these is the mitochondrial transcription termination factor (mTERF) family, the members of which regulate various steps in gene expression in chloroplasts and/or mitochondria. Here, we describe the molecular function of the chloroplast-localized mTERF2 in Arabidopsis thaliana. The complete loss of mTERF2 function results in embryo lethality, whereas directed, microRNA (amiR)-mediated knockdown of MTERF2 is associated with perturbed plant development and reduced chlorophyll content. Moreover, photosynthesis is impaired in amiR-mterf2 plants, as indicated by reduced levels of photosystem subunits, although the levels of the corresponding messenger RNAs are not affected. RNA immunoprecipitation followed by RNA sequencing (RIP-Seq) experiments, combined with whole-genome RNA-Seq, RNA gel-blot, and quantitative RT-PCR analyses, revealed that mTERF2 is required for the splicing of the group IIB introns of ycf3 (intron 1) and rps12.


2021 ◽  
Vol 22 (2) ◽  
pp. 922
Author(s):  
Martin Bartas ◽  
Jiří Červeň ◽  
Simona Guziurová ◽  
Kristyna Slychko ◽  
Petr Pečinka

Nucleic acid-binding proteins are traditionally divided into two categories: With the ability to bind DNA or RNA. In the light of new knowledge, such categorizing should be overcome because a large proportion of proteins can bind both DNA and RNA. Another even more important features of nucleic acid-binding proteins are so-called sequence or structure specificities. Proteins able to bind nucleic acids in a sequence-specific manner usually contain one or more of the well-defined structural motifs (zinc-fingers, leucine zipper, helix-turn-helix, or helix-loop-helix). In contrast, many proteins do not recognize nucleic acid sequence but rather local DNA or RNA structures (G-quadruplexes, i-motifs, triplexes, cruciforms, left-handed DNA/RNA form, and others). Finally, there are also proteins recognizing both sequence and local structural properties of nucleic acids (e.g., famous tumor suppressor p53). In this mini-review, we aim to summarize current knowledge about the amino acid composition of various types of nucleic acid-binding proteins with a special focus on significant enrichment and/or depletion in each category.


Sign in / Sign up

Export Citation Format

Share Document