drop jumps
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 51)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
Alessandro M. Zagatto ◽  
Gabriel M. Claus ◽  
Yago M. Dutra ◽  
Rodrigo A. de Poli ◽  
Vithor H. F. Lopes ◽  
...  

Abstract Background The aim of the investigation was to compare the occurrence of post-activation performance enhancement (PAPE) after drop jumps, or heavy sled towing, and the subsequent effect on repeated sprint ability (RSA). Methods Ten young basketball players (17 ± 1 yrs) performed, in randomized order, RSA test with changes of direction after a standardized warm up followed by drop jumps, heavy sled towing, or no exercise (control condition). Neuromuscular assessments composed of two maximal voluntary contractions of the knee extensors, peripheral nerve stimulation, and surface electromyography (EMG), responses were recorded before and immediately after the RSA. The EMG signal of leg muscles during sprinting were also recorded as well as the blood lactate concentration. Results The drop jumps improved the RSA mean time (P = 0.033), total time (P = 0.031), and slowest time (P = 0.029) compared to control condition, while heavy sled towing did not change RSA outcomes (P > 0.05). All conditions exhibited a decrease of doublet high frequency stimulation force (pre-post measurement) (P = 0.023) and voluntary activation (P = 0.041), evidencing the occurrence from peripheral and central components of fatigue after RSA, respectively, but no difference was evident between-conditions. There was a significantly greater EMG activity during sprints for the biceps femoris after drop jumps, only when compared to control condition (P = 0.013). Conclusion Repeated drop jumps were effective to induce PAPE in the form of RSA, while heavy sled towing had no effect on RSA performance in young basketball players. Furthermore, both conditioning activities exhibited similar levels of fatigue following the RSA protocol. Thus, drop jumps may be used as an alternative to induce PAPE and thus improve performance during sprints in young male basketball players.


Author(s):  
Alessandro Moura Zagatto ◽  
Yago Medeiros Dutra ◽  
Gabriel Claus ◽  
Elvis de Sousa Malta ◽  
Rodrigo Araujo Bonetti. de Poli ◽  
...  

2021 ◽  
Vol 2 (2021) ◽  
pp. 17-27
Author(s):  
Sebastian Möck ◽  
◽  
René Hartmann ◽  
Klaus Wirth ◽  
◽  
...  

A high level of sprinting performance is relevant in various sports. Because of the transition of movement patterns in different sprint sections there is a shift in the relevance of speed-strength of the knee and hip extensors, and stretch-shortening cycle performance seems conceivable. Fifty-six physical education students (23.70 ± 3.00 years, 176.9 ± 8.10cm, 74.20 ± 10.30kg) were investigated. They performed sprints up to 30m in which different sections were analyzed and vertical jumps (squat jump, countermovement jump, drop jump from different dropping heights). Vertical jumping tests in squat jump and countermovement jump revealed mean values of 31.95 ± 6.56cm and 34.28 ± 7.47cm, respectively, while the drop jumps showed mean RSI values between 155.11 ± 36.77 and 168.24 ± 36.29 dependent on the dropping height. The sprint test showed a mean performance of 4.464 ± .343s (30m). The correlational analysis showed significant correlations (p < .01) for vertical jumping height with all sprinting sections (r = −.652 to −.834). Drop jump performance also showed significant correlations (p < .01) with all the sections (r = −.379 to −.594). The results let us hypothesize that the observed sample generated similar ground-reaction forces in the sprint and drop jump from a height of 40 cm.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1590
Author(s):  
Ke-Ke Zhang ◽  
Yi-Ming Chen ◽  
Yu-Ge Li ◽  
Shun Yao ◽  
Yu Su ◽  
...  

The difference of drop heights will affect the biomechanics of lower extremities during drop-jump (DJ) landing. Therefore, this study explored the effects of drop heights and training volumes on interjoint coordination and the side-to-side asymmetry of the lower extremities during landing. Twenty males were randomly assigned to perform 200 DJs (DJs200) from 30, 40 and 50 cm (drop-jump height (DJH) 30, DJH40 and DJH50) platform. One-way ANOVA repeated measure, using MATLAB software, was used to compare the differences of interjoint coordination, side-to-side asymmetry of ground contact time (GCT) and the maximum impact in vertical ground-reaction forces peak (I-vGRFpeak) in the 1st, 50th, 100th, 150th and 200th jumps (DJ1, DJs50, DJs100, DJs150 and DJs200). To examine whether significant differences exist, the least significant difference’s (LSD) method was used for post-hoc comparison. The mean absolute relative phase (MARP) and deviation phase (DP) of hip–knee were lower than DJH50 at DJH30 and DJH40, while side-to-side asymmetry of GCT and I-vGRFpeak were greater than DJH30 and DJH40 at DJH50 within DJs200 (all p <0.05). However, there was no significant difference in MARP and DP of hip–ankle and knee–ankle. Therefore, training at DJH30 may effectively improve jumping performance and reduce musculoskeletal injury risk.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5644
Author(s):  
Liqin Deng ◽  
Yang Yang ◽  
Chenhao Yang ◽  
Ying Fang ◽  
Xini Zhang ◽  
...  

Objectives: To explore the effects of wearing compression garments on joint mechanics, soft tissue vibration and muscle activities during drop jumps. Methods: Twelve healthy male athletes were recruited to execute drop jumps from heights of 30, 45 and 60 cm whilst wearing compression shorts (CS) and control shorts (CON). Sagittal plane kinematics, ground reaction forces, accelerations of the quadriceps femoris (QF), hamstrings (HM) and shoe heel-cup, and electromyography images of the rectus femoris (RF) and biceps femoris (BF) were collected. Results: Compared with wearing CON, wearing CS significantly reduced the QF peak acceleration at 45 and 60 cm and the HM peak acceleration at 30 cm. Wearing CS significantly increased the damping coefficient for QF and HM at 60 cm compared with wearing CON. Moreover, the peak transmissibility when wearing CS was significantly lower than that when wearing CON for all soft tissue compartments and heights, except for QF at 30 cm. Wearing CS reduced the RF activity during the pre-, post-, and eccentric activations for all heights and concentric activations at 45 cm; it also reduced the BF activity during post- and eccentric activations at 30 and 60 cm, respectively. The hip and knee joint moments and power or jump height were unaffected by the garment type. Conclusion: Applying external compression can reduce soft tissue vibrations without compromising neuromuscular performance during strenuous physical activities that involve exposure to impact-induced vibrations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Monti ◽  
Janice Waldvogel ◽  
Ramona Ritzmann ◽  
Kathrin Freyler ◽  
Kirsten Albracht ◽  
...  

Purpose: Fascicle and sarcomere lengths are important predictors of muscle mechanical performance. However, their regulation during stretch-shortening cycle (SSC) activities in usual and challenging conditions is poorly understood. In this study, we aimed to investigate muscle fascicle and sarcomere behavior during drop jumps (a common SSC activity) in conditions of variable gravity.Methods: Fifteen volunteers performed repeated drop jumps in 1 g, hypo-gravity (0 to 1 g), and hyper-gravity (1 to 2 g) during a parabolic flight. Gastrocnemius medialis (GM) electromyographic activity and fascicle length (Lf) were measured at drop-off, ground contact (GC), minimum ankle joint angle (MAJ), and push-off. GM sarcomere number was estimated by dividing Lf, measured by ultrasound at rest, by published data on GM sarcomere length, and measured in vivo at the same joint angle. Changes in sarcomere length were estimated by dividing GM Lf in each jump phase by sarcomere number calculated individually. The sarcomere force-generating capacity in each jump phase was estimated from the sarcomere length-tension relationship previously reported in the literature.Results: The results showed that, regardless of the gravity level, GM sarcomeres operated in the ascending portion of their length-tension relationship in all the jump phases. Interestingly, although in hypo-gravity and hyper-gravity during the braking phase (GC-MAJ) GM fascicles and sarcomeres experienced a stretch (as opposed to the quasi-isometric behavior in 1 g), at MAJ they reached similar lengths as in 1 g, allowing sarcomeres to develop about the 70% of their maximum force.Conclusion: The observed fascicle behavior during drop jumping seems useful for anchoring the tendon, enabling storage of elastic energy and its release in the subsequent push-off phase for effectively re-bouncing in all gravity levels, suggesting that an innate neuromuscular wisdom enables to perform SSC movements also in challenging conditions.


Author(s):  
Diego Jaén-Carrillo ◽  
Antonio Cartón-Llorente ◽  
Demetrio Lozano-Jarque ◽  
Alberto Rubio-Peirotén ◽  
Luis E. Roche-Seruendo ◽  
...  

Background: Musculotendinous reactive strength is a key factor for the utilization of elastic energy in sporting activities such as running. AIM: To evaluate the relationship between musculotendinous reactive strength and lower-limb stiffness during running as well as to identify age-related differences in both variables. Methods: Fifty-nine amateur endurance runners performed three 20-cm drop jumps and a constant 3-min easy run on a motorized treadmill. Reactive strength index and dynamic lower-limb stiffness were calculated with a photoelectric cell system by jumping and running, respectively. Additionally, sit to stand difference in plantar arch height was assessed as a static lower-limb stiffness measure. The cluster analysis allows the comparison between younger and older runners. Results: No significant correlations were found between jumping reactive strength and running lower-limb stiffness. The younger group performed better at drop jumps (p = 0.023, ES = 0.82), whereas higher-but-no-significant results were found for reactive strength index and stiffness-related metrics. Conclusions: Musculotendinous vertical reactiveness may not be transferred to combined vertical and horizontal movements such as running.


Author(s):  
Chin-Yi Gu ◽  
Xiang-Rui Li ◽  
Chien-Ting Lai ◽  
Jin-Jiang Gao ◽  
I-Lin Wang ◽  
...  

Side-to-side asymmetry of lower extremities may influence the risk of injury associated with drop jump. Moreover, drop heights using relative height across individuals based on respective jumping abilities could better explain lower-extremity loading impact for different genders. The purpose of the current study was to evaluate the sex differences of impact forces and asymmetry during the landing phase of drop-jump tasks using drop heights, set according to participants’ maximum jumping height. Ten male and ten female athletes performed drop-jump tasks on two force plates, and ground reaction force data were collected. Both feet needed to land entirely on the dedicated force plates as simultaneously as possible. Ground reaction forces and asymmetry between legs were calculated for jumps from 100%, 130%, and 160% of each participant’s maximum jumping height. Females landed with greater asymmetry at time of contact initiation and time of peak impact force and had more asymmetrical peak impact force than males. Greater values and shorter time after ground contact of peak impact force were found when the drop height increased to 160% of maximum jumping ability as compared to 100% and 130%. Females exhibited greater asymmetry than males during drop jumps from relative heights, which may relate to the higher risk of anterior cruciate ligament injury among females. Greater sex disparity was evident in impact force asymmetry than in the magnitude of peak impact force; therefore, it may be a more appropriate field-screening test for risk of anterior cruciate ligament injury.


Sign in / Sign up

Export Citation Format

Share Document