quantum symmetries
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Daniel G. Robbins ◽  
Eric Sharpe ◽  
Thomas Vandermeulen

In this paper, we apply decomposition to orbifolds with quantum symmetries to resolve anomalies. Briefly, it has been argued by, e.g. Wang–Wen–Witten, Tachikawa that an anomalous orbifold can sometimes be resolved by enlarging the orbifold group so that the pullback of the anomaly to the larger orbifold group is trivial. For this procedure to resolve the anomaly, one must specify a set of phases in the larger orbifold, whose form is implicit in the extension construction. There are multiple choices of consistent phases, which give rise to physically distinct resolutions. We apply decomposition, and find that theories with enlarged orbifold groups are equivalent to (disjoint unions of copies of) orbifolds by nonanomalous subgroups of the original orbifold group. In effect, decomposition implies that enlarging the orbifold group is equivalent to making it smaller. We provide a general conjecture for such descriptions, which we check in a number of examples.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Daniel G. Robbins ◽  
Eric Sharpe ◽  
Thomas Vandermeulen

Abstract This paper describes a generalization of decomposition in orbifolds. In general terms, decomposition states that two-dimensional orbifolds and gauge theories whose gauge groups have trivially-acting subgroups decompose into disjoint unions of theories. However, decomposition can be, at least naively, broken in orbifolds if the orbifold has discrete torsion in the trivially-acting subgroup. (Formally, this breaks finite global one-form symmetries.) Nevertheless, even in such cases, one still sees rudiments of decomposition. In this paper, we generalize decomposition in orbifolds to include such examples of discrete torsion, which we check in numerous examples. Our analysis includes as special cases (and in one sense generalizes) quantum symmetries of abelian orbifolds.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 530
Author(s):  
Marius Krumm ◽  
Philipp A. Höhn ◽  
Markus P. Müller

In a quantum world, reference frames are ultimately quantum systems too – but what does it mean to "jump into the perspective of a quantum particle"? In this work, we show that quantum reference frame (QRF) transformations appear naturally as symmetries of simple physical systems. This allows us to rederive and generalize known QRF transformations within an alternative, operationally transparent framework, and to shed new light on their structure and interpretation. We give an explicit description of the observables that are measurable by agents constrained by such quantum symmetries, and apply our results to a puzzle known as the `paradox of the third particle'. We argue that it can be reduced to the question of how to relationally embed fewer into more particles, and give a thorough physical and algebraic analysis of this question. This leads us to a generalization of the partial trace (`relational trace') which arguably resolves the paradox, and it uncovers important structures of constraint quantization within a simple quantum information setting, such as relational observables which are key in this resolution. While we restrict our attention to finite Abelian groups for transparency and mathematical rigor, the intuitive physical appeal of our results makes us expect that they remain valid in more general situations.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Diego Delmastro ◽  
Jaume Gomis

Abstract We determine the unitary and anti-unitary Lagrangian and quantum symmetries of arbitrary abelian Chern-Simons theories. The symmetries depend sensitively on the arithmetic properties (e.g. prime factorization) of the matrix of Chern-Simons levels, revealing interesting connections with number theory. We give a complete characterization of the symmetries of abelian topological field theories and along the way find many theories that are non-trivially time-reversal invariant by virtue of a quantum symmetry, including U(1)k Chern-Simons theory and (ℤk)ℓ gauge theories. For example, we prove that U(1)k Chern-Simons theory is time-reversal invariant if and only if −1 is a quadratic residue modulo k, which happens if and only if all the prime factors of k are Pythagorean (i.e., of the form 4n + 1), or Pythagorean with a single additional factor of 2. Many distinct non-abelian finite symmetry groups are found.


Author(s):  
Alexandru Chirvasitu

Abstract We introduce the coherent algebra of a compact metric measure space by analogy with the corresponding concept for a finite graph. As an application we show that upon topologizing the collection of isomorphism classes of compact metric measure spaces appropriately, the subset consisting of those with trivial compact quantum automorphism group is of 2nd Baire category. The latter result can be paraphrased as saying that “most” compact metric measure spaces have no (quantum) symmetries; in particular, they also have trivial ordinary (i.e., classical) automorphism group.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 975
Author(s):  
Dominik Prorok ◽  
Anatolij Prykarpatski

Based on the G. Goldin’s quantum current algebra symmetry representation theory, have succeeded in explaining a hidden relationship between the quantum many-particle Hamiltonian operators, defined in the Fock space, their factorized structure and integrability. Interesting for applications quantum oscillatory Hamiltonian operators are considered, the quantum symmetries of the integrable quantum Calogero-Sutherland model are analyzed in detail.


Sign in / Sign up

Export Citation Format

Share Document