randomized incremental construction
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Jean-Daniel Boissonnat ◽  
Olivier Devillers ◽  
Kunal Dutta ◽  
Marc Glisse

Abstract Randomized incremental construction (RIC) is one of the most important paradigms for building geometric data structures. Clarkson and Shor developed a general theory that led to numerous algorithms which are both simple and efficient in theory and in practice. Randomized incremental constructions are usually space-optimal and time-optimal in the worst case, as exemplified by the construction of convex hulls, Delaunay triangulations, and arrangements of line segments. However, the worst-case scenario occurs rarely in practice and we would like to understand how RIC behaves when the input is nice in the sense that the associated output is significantly smaller than in the worst case. For example, it is known that the Delaunay triangulation of nicely distributed points in $${\mathbb {E}}^d$$ E d or on polyhedral surfaces in $${\mathbb {E}}^3$$ E 3 has linear complexity, as opposed to a worst-case complexity of $$\Theta (n^{\lfloor d/2\rfloor })$$ Θ ( n ⌊ d / 2 ⌋ ) in the first case and quadratic in the second. The standard analysis does not provide accurate bounds on the complexity of such cases and we aim at establishing such bounds in this paper. More precisely, we will show that, in the two cases above and variants of them, the complexity of the usual RIC is $$O(n\log n)$$ O ( n log n ) , which is optimal. In other words, without any modification, RIC nicely adapts to good cases of practical value. At the heart of our proof is a bound on the complexity of the Delaunay triangulation of random subsets of $${\varepsilon }$$ ε -nets. Along the way, we prove a probabilistic lemma for sampling without replacement, which may be of independent interest.


2014 ◽  
Vol 24 (04) ◽  
pp. 347-372 ◽  
Author(s):  
CECILIA BOHLER ◽  
ROLF KLEIN

Abstract Voronoi diagrams, AVDs for short, are based on bisecting curves enjoying simple combinatorial properties, rather than on the geometric notions of sites and distance. They serve as a unifying concept. Once the bisector system of any concrete type of Voronoi diagram is shown to fulfill the AVD axioms, structural results and efficient algorithms become available without further effort; for example, the first optimal algorithms for constructing nearest Voronoi diagrams of disjoint convex objects, or of line segments under the Hausdorff metric, have been obtained this way. One of these axioms stated that all Voronoi regions must be pathwise connected, a property quite useful in divide&conquer and randomized incremental construction algorithms. Yet, there are concrete Voronoi diagrams where this axiom fails to hold. In this paper we consider, for the first time, abstract Voronoi diagrams with disconnected regions. By combining a randomized incremental construction technique with trapezoidal decomposition we obtain an algorithm that runs in expected time [Formula: see text], where s is the maximum number of faces a Voronoi region in a subdiagram of three sites can have, and where mj denotes the average number of faces per region in any subdiagram of j sites. In the connected case, where s = 1 = mj , this results in the known optimal bound [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document