similarity estimation
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 57)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Vol 18 (2) ◽  
pp. 1-27
Author(s):  
Hang Cui ◽  
Tarek Abdelzaher

This article narrows the gap between physical sensing systems that measure physical signals and social sensing systems that measure information signals by (i) defining a novel algorithm for extracting information signals (building on results from text embedding) and (ii) showing that it increases the accuracy of truth discovery—the separation of true information from false/manipulated one. The work is applied in the context of separating true and false facts on social media, such as Twitter and Reddit, where users post predominantly short microblogs. The new algorithm decides how to aggregate the signal across words in the microblog for purposes of clustering the miscroblogs in the latent information signal space, where it is easier to separate true and false posts. Although previous literature extensively studied the problem of short text embedding/representation, this article improves previous work in three important respects: (1) Our work constitutes unsupervised truth discovery, requiring no labeled input or prior training. (2) We propose a new distance metric for efficient short text similarity estimation, we call Semantic Subset Matching , that improves our ability to meaningfully cluster microblog posts in the latent information signal space. (3) We introduce an iterative framework that jointly improves miscroblog clustering and truth discovery. The evaluation shows that the approach improves the accuracy of truth-discovery by 6.3%, 2.5%, and 3.8% (constituting a 38.9%, 14.2%, and 18.7% reduction in error, respectively) in three real Twitter data traces.


2022 ◽  
Vol 24 (3) ◽  
pp. 0-0

Content-based recommender system is a subclass of information systems that recommends an item to the user based on its description. It suggests items such as news, documents, articles, webpages, journals, and more to users as per their inclination by comparing the key features of the items with key terms or features of user interest profiles. This paper proposes the new methodology using Non-IIDness based semantic term-term coupling from the content referred by users to enhance recommendation results. In the proposed methodology, the semantic relationship is analyzed by estimating the explicit and implicit relationship between terms. It associates terms that are semantically related in real world or are used inter-changeably such as synonyms. The underestimated features of user profiles have been enhanced after term-term relation analysis which results in improved similarity estimation of relevant items with the user profiles.The experimentation result proves that the proposed methodology improves the overall search and retrieval results as compared to the state-of-art algorithms.


Author(s):  
Zehua Zhu ◽  
Zhimin Zhang ◽  
Xin Gao ◽  
Li Feng ◽  
Dengming Chen ◽  
...  

Objective: We aimed to use an individual metabolic connectome method, the Jensen-Shannon Divergence Similarity Estimation (JSSE), to characterize the aberrant connectivity patterns and topological alterations of the individual-level brain metabolic connectome and predict the long-term surgical outcomes in temporal lobe epilepsy (TLE).Methods: A total of 128 patients with TLE (63 females, 65 males; 25.07 ± 12.01 years) who underwent Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) imaging were enrolled. Patients were classified either as experiencing seizure recurrence (SZR) or seizure free (SZF) at least 1 year after surgery. Each individual’s metabolic brain network was ascertained using the proposed JSSE method. We compared the similarity and difference in the JSSE network and its topological measurements between the two groups. The two groups were then classified by combining the information from connection and topological metrics, which was conducted by the multiple kernel support vector machine. The validation was performed using the nested leave-one-out cross-validation strategy to confirm the performance of the methods.Results: With a median follow-up of 33 months, 50% of patients achieved SZF. No relevant differences in clinical features were found between the two groups except age at onset. The proposed JSSE method showed marked degree reductions in IFGoperc.R, ROL. R, IPL. R, and SMG. R; and betweenness reductions in ORBsup.R and IOG. R; meanwhile, it found increases in the degree analysis of CAL. L and PCL. L, and in the betweenness analysis of PreCG.R, IOG. R, PoCG.R, PCL. L and PCL.R. Exploring consensus significant metabolic connections, we observed that the most involved metabolic motor networks were the INS-TPOmid.L, MTG. R-SMG. R, and MTG. R-IPL.R pathways between the two groups, and yielded another detailed individual pathological connectivity in the PHG. R-CAU.L, PHG. R-HIP.L, TPOmid.L-LING.R, TPOmid.L-DCG.R, MOG. R-MTG.R, MOG. R-ANG.R, and IPL. R-IFGoperc.L pathways. These aberrant functional network measures exhibited ideal classification performance in predicting SZF individuals from SZR ones at a sensitivity of 75.00%, a specificity of 92.79%, and an accuracy of 83.59%.Conclusion: The JSSE method indicator can identify abnormal brain networks in predicting an individual’s long-term surgical outcome of TLE, thus potentially constituting a clinically applicable imaging biomarker. The results highlight the biological meaning of the estimated individual brain metabolic connectome.


2022 ◽  
pp. 77-111
Author(s):  
Yuhao Yao ◽  
Ryosuke Shibasaki ◽  
Haoran Zhang

2022 ◽  
Vol 70 (3) ◽  
pp. 4763-4780
Author(s):  
Abdulaziz Al-Besher ◽  
Kailash Kumar ◽  
M. Sangeetha ◽  
Tinashe Butsa

2021 ◽  
Vol 48 (11) ◽  
pp. 1184-1193
Author(s):  
Seonghwan Choi ◽  
Donghyun Son ◽  
Hochang Lee

Author(s):  
Zhongyi Zhou ◽  
Anran Xu ◽  
Koji Yatani

The beauty of synchronized dancing lies in the synchronization of body movements among multiple dancers. While dancers utilize camera recordings for their practice, standard video interfaces do not efficiently support their activities of identifying segments where they are not well synchronized. This thus fails to close a tight loop of an iterative practice process (i.e., capturing a practice, reviewing the video, and practicing again). We present SyncUp, a system that provides multiple interactive visualizations to support the practice of synchronized dancing and liberate users from manual inspection of recorded practice videos. By analyzing videos uploaded by users, SyncUp quantifies two aspects of synchronization in dancing: pose similarity among multiple dancers and temporal alignment of their movements. The system then highlights which body parts and which portions of the dance routine require further practice to achieve better synchronization. The results of our system evaluations show that our pose similarity estimation and temporal alignment predictions were correlated well with human ratings. Participants in our qualitative user evaluation expressed the benefits and its potential use of SyncUp, confirming that it would enable quick iterative practice.


Author(s):  
Salvador Martínez ◽  
Sébastien Gérard ◽  
Jordi Cabot

2021 ◽  
Author(s):  
Yaqiang Cao ◽  
Shuai Liu ◽  
Gang Ren ◽  
Qingsong Tang ◽  
Keji Zhao

Investigating chromatin interactions between regulatory regions such as enhancer and promoter elements is vital for a deeper understanding of gene expression regulation. The emerging 3D mapping technologies focusing on enriched signals such as Hi-TrAC/TrAC-looping, compared to Hi-C and variants, reduce the sequencing cost and provide higher interaction resolution for cis-regulatory elements. A robust pipeline is needed for the comprehensive interpretation of these data, especially for loop-centric analysis. Therefore, we have developed a new versatile tool named cLoops2 for the full-stack analysis of the 3D chromatin interaction data. cLoops2 consists of core modules for peak-calling, loop-calling, differentially enriched loops calling and loops annotation. Additionally, it also contains multiple modules to carry out interaction resolution estimation, data similarity estimation, features quantification and aggregation analysis, and visualization. cLoops2 with documentation and example data are open source and freely available at GitHub: https://github.com/YaqiangCao/cLoops2.


Author(s):  
Junnan Zhu ◽  
Lu Xiang ◽  
Yu Zhou ◽  
Jiajun Zhang ◽  
Chengqing Zong

Multimodal summarization aims to extract the most important information from the multimedia input. It is becoming increasingly popular due to the rapid growth of multimedia data in recent years. There are various researches focusing on different multimodal summarization tasks. However, the existing methods can only generate single-modal output or multimodal output. In addition, most of them need a lot of annotated samples for training, which makes it difficult to be generalized to other tasks or domains. Motivated by this, we propose a unified framework for multimodal summarization that can cover both single-modal output summarization and multimodal output summarization. In our framework, we consider three different scenarios and propose the respective unsupervised graph-based multimodal summarization models without the requirement of any manually annotated document-summary pairs for training: (1) generic multimodal ranking, (2) modal-dominated multimodal ranking, and (3) non-redundant text-image multimodal ranking. Furthermore, an image-text similarity estimation model is introduced to measure the semantic similarity between image and text. Experiments show that our proposed models outperform the single-modal summarization methods on both automatic and human evaluation metrics. Besides, our models can also improve the single-modal summarization with the guidance of the multimedia information. This study can be applied as the benchmark for further study on multimodal summarization task.


Sign in / Sign up

Export Citation Format

Share Document