advection diffusion reaction equations
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 34)

H-INDEX

12
(FIVE YEARS 4)

Author(s):  
Ihteram Ali ◽  
Sirajul Haq ◽  
Kottakkaran Sooppy Nisar ◽  
Shams Ul Arifeen

AbstractIn this work, a numerical scheme based on combined Lucas and Fibonacci polynomials is proposed for one- and two-dimensional nonlinear advection–diffusion–reaction equations. Initially, the given partial differential equation (PDE) reduces to discrete form using finite difference method and $$\theta -$$ θ - weighted scheme. Thereafter, the unknown functions have been approximated by Lucas polynomial while their derivatives by Fibonacci polynomials. With the help of these approximations, the nonlinear PDE transforms into a system of algebraic equations which can be solved easily. Convergence of the method has been investigated theoretically as well as numerically. Performance of the proposed method has been verified with the help of some test problems. Efficiency of the technique is examined in terms of root mean square (RMS), $$L_2$$ L 2 and $$L_\infty $$ L ∞ error norms. The obtained results are then compared with those available in the literature.


2021 ◽  
Vol 88 (1) ◽  
Author(s):  
Luca Bonaventura ◽  
Elisa Calzola ◽  
Elisabetta Carlini ◽  
Roberto Ferretti

AbstractWe propose a second order, fully semi-Lagrangian method for the numerical solution of systems of advection-diffusion-reaction equations, which is based on a semi-Lagrangian approach to approximate in time both the advective and the diffusive terms. The proposed method allows to use large time steps, while avoiding the solution of large linear systems, which would be required by implicit time discretization techniques. Standard interpolation procedures are used for the space discretization on structured and unstructured meshes. A novel extrapolation technique is proposed to enforce second-order accurate Dirichlet boundary conditions. We include a theoretical analysis of the scheme, along with numerical experiments which demonstrate the effectiveness of the proposed approach and its superior efficiency with respect to more conventional explicit and implicit time discretizations.


2021 ◽  
Vol 82 (1-2) ◽  
Author(s):  
Christian Engwer ◽  
Michael Wenske

AbstractGlioblastoma Multiforme is a malignant brain tumor with poor prognosis. There have been numerous attempts to model the invasion of tumorous glioma cells via partial differential equations in the form of advection–diffusion–reaction equations. The patient-wise parametrization of these models, and their validation via experimental data has been found to be difficult, as time sequence measurements are mostly missing. Also the clinical interest lies in the actual (invisible) tumor extent for a particular MRI/DTI scan and not in a predictive estimate. Therefore we propose a stationalized approach to estimate the extent of glioblastoma (GBM) invasion at the time of a given MRI/DTI scan. The underlying dynamics can be derived from an instationary GBM model, falling into the wide class of advection-diffusion-reaction equations. The stationalization is introduced via an analytic solution of the Fisher-KPP equation, the simplest model in the considered model class. We investigate the applicability in 1D and 2D, in the presence of inhomogeneous diffusion coefficients and on a real 3D DTI-dataset.


Sign in / Sign up

Export Citation Format

Share Document