electron proton transfer
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 17)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 478 (23) ◽  
pp. 4093-4097
Author(s):  
Matthew J. Guberman-Pfeffer ◽  
Nikhil S. Malvankar

Every living cell needs to get rid of leftover electrons when metabolism extracts energy through the oxidation of nutrients. Common soil microbes such as Geobacter sulfurreducens live in harsh environments that do not afford the luxury of soluble, ingestible electron acceptors like oxygen. Instead of resorting to fermentation, which requires the export of reduced compounds (e.g. ethanol or lactate derived from pyruvate) from the cell, these organisms have evolved a means to anaerobically respire by using nanowires to export electrons to extracellular acceptors in a process called extracellular electron transfer (EET) [ 1]. Since 2005, these nanowires were thought to be pili filaments [ 2]. But recent studies have revealed that nanowires are composed of multiheme cytochromes OmcS [ 3, 4] and OmcZ [ 5] whereas pili remain inside the cell during EET and are required for the secretion of nanowires [ 6]. However, how electrons are passed to these nanowires remains a mystery ( Figure 1A). Periplasmic cytochromes (Ppc) called PpcA-E could be doing the job, but only two of them (PpcA and PpcD) can couple electron/proton transfer — a necessary condition for energy generation. In a recent study, Salgueiro and co-workers selectively replaced an aromatic with an aliphatic residue to couple electron/proton transfer in PpcB and PpcE (Biochem. J. 2021, 478 (14): 2871–2887). This significant in vitro success of their protein engineering strategy may enable the optimization of bioenergetic machinery for bioenergy, biofuels, and bioelectronics applications.


2021 ◽  
Vol 26 (3(79)) ◽  
pp. 55-62
Author(s):  
A. P. Avdeenko ◽  
Yu. P. Kholmovoi ◽  
A. L. Yusina

Quinone-hydroquinone pairs are prototypes of organic redox systems, and studies of the electrochemical behavior of these compounds are of great interest for research. Electrochemical behavior associated with the equilibrium of electron-proton transfer provides information about the molecular structure and environment of the process. Apart from chemical aspects, quinones play an important role in the biochemistry of living cells. Quinone derivatives, used as drugs for several types of human cancers, have been found to have their biological activity related to their redox behavior. Quinoneimines-aminophenols form similar pairs. In nucleophilic addition reactions of N‑substituted p-quinoneimines, parallel redox processes are often observed, and the higher the redox potential of quinoneimine, the greater the likelihood of such processes. Naphthoquinoneimines with aromatic amines and acylhydrazines follow the scheme of 1,4-addition, but as reaction products are oxidized products -4-arylsulfonylamido‑2-arylamino(2-aroylamino)-1,4-naphthoquinoneimines. The oxidant may be the original naphthoquinoneimine and oxygen. Studies have shown that oxygen in the reaction of 1,4-naphthoquinoneimines with acylhydrazines is the only oxidant that oxidizes the product of 1,4-addition, as evidenced by the study of redox potentials. Both oxidized and reduced form of the compounds, as naphthoquinoneimine and the corresponding aminonaphthol, are used to determine the redox potential by direct potentiometry. Due to the instability of the reduced form in the case of the pair naphthoquinoneimine-aminonaphthol, we used only the reduced form, which is oxidized in the cell by oxygen. The redox potential of the naphthoquinoneimine-aminonaphthol galvanic pair was determined as the average value between the potential Emax, which was established in the system upon complete oxidation of the starting substance, that is, when only naphthoquinone imine remains in the system, and the potential Emin, which was registered at the beginning of the process in the system with the reduced form – the corresponding aminonaphthol. This is the method of direct potentiometry in the variant of the middle potential.


2021 ◽  
Author(s):  
Gaurang Khot ◽  
Neil Shirtcliffe ◽  
Tansu Celikel

AbstractFast Scan Cyclic Voltammetry (FSCV) combined with carbon electrodes is considered as the gold standard method for real-time detection of oxidizable neurotransmitters. The bioinert nature, rapid electron transfer kinetics and long-term stability make carbon an attractive material for probing brain electrochemistry. Herein, we first demonstrate a rapid fabrication process of carbonized nanopipettes and subsequently perform experimental measurements and theoretical simulations to study mechanisms of dopamine binding on carbonized surfaces. To explain the kinetics of dopamine oxidation on carbonized electrodes we adapted the electron-proton transfer model originally developed by Compton and found that the electron-proton transfer model best explains the experimental observations. We further investigated the electron-proton transfer theory by constructing a Density Function Theory (DFT) for visualization of dopamine binding to graphite-like surfaces consisting of heteroatoms. For graphite surfaces that are capped with hydrogen alone, we found that dopamine is oxidized, whereas, on graphite surfaces doped with heteroatoms such as nitrogen and oxygen, we found deprotonation of dopamine along with oxidation thus validating our experimental and theoretical data. These observations provide mechanistic insights into multistep electron transfer during dopamine oxidation on graphite surfaces.Graphical abstractA: Pictorial view of the experimental setup of carbonized electrodes. The application of waveform causes the oxidation of dopamine. B. Background subtracted voltammogram of dopamine, wherein the waveform applied is -0.4V to 1.3V and cycled back at -0.4V at 200 V s-1 at 10 Hz. C: A hotspot showing the oxidation and reduction of dopamine, wherein two distinct redox spots can be seen. The first redox spot can be seen at 0.0V and the second one at 0.5V. Thus showing a multistep electron transfer for dopamine. D: A DFT model for dopamine’s interaction with graphite surfaces doped with nitrogen atoms. Oxidation of oxygen (red) can be seen with loss of protons.


Polyhedron ◽  
2021 ◽  
pp. 115376
Author(s):  
Kristina Martinez ◽  
Kaitlyn Benson ◽  
Jared Paul ◽  
Russell H. Schmehl

2021 ◽  
Author(s):  
Marta A. Silva ◽  
Pilar C. Portela ◽  
Carlos A Salgueiro

The redox potential values of cytochromes can be modulated by the protonation/deprotonation of neighbor groups (redox-Bohr effect), a mechanism that permits the proteins to couple electron/proton transfer. In the respiratory chains, this effect is particularly relevant if observed in the physiological pH range, as it may contribute to the electrochemical gradient for ATP synthesis. A constitutively produced family of five triheme cytochromes (PpcA−E) from the bacterium Geobacter sulfurreducens plays a crucial role in extracellular electron transfer, a hallmark that permits this bacterium to be explored for several biotechnological applications. Two members of this family (PpcA and PpcD) couple electron/proton transfer in the physiological pH range, a feature not shared with PpcB and PpcE. That ability is crucial for G. sulfurreducens’ growth in Fe(III)-reducing habitats since extra contributors to the electrochemical gradient are needed. It was postulated that the redox-Bohr effect is determined by the nature of residue 6, a leucine in PpcA/PpcD and a phenylalanine in PpcB/PpcE. To confirm this hypothesis, Phe6 was replaced by leucine in PpcB and PpcE. The functional properties of these mutants were investigated by NMR and UV-visible spectroscopy to assess their capability to couple electron/proton transfer in the physiological pH range. The results obtained showed that the mutants have an increased redox-Bohr effect and are now capable of coupling electron/proton transfer. This confirms the determinant role of the nature of residue 6 in the modulation of the redox-Bohr effect in this family of cytochromes, opening routes to engineer Geobacter cells with improved biomass production.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingxuan Li ◽  
Danping Hui ◽  
Yuqing Sun ◽  
Ying Wang ◽  
Zhijian Wu ◽  
...  

AbstractNatural photosynthesis proceeded by sequential water splitting and CO2 reduction reactions is an efficient strategy for CO2 conversion. Here, mimicking photosynthesis to boost CO2-to-CO conversion is achieved by using plasmonic Bi as an electron-proton-transfer mediator. Electroreduction of H2O with a Bi electrode simultaneously produces O2 and hydrogen-stored Bi (Bi-Hx). The obtained Bi-Hx is subsequently used to generate electron-proton pairs under light irradiation to reduce CO2 to CO; meanwhile, Bi-Hx recovers to Bi, completing the catalytic cycle. This two-step strategy avoids O2 separation and enables a CO production efficiency of 283.8 μmol g−1 h−1 without sacrificial reagents and cocatalysts, which is 9 times that on pristine Bi in H2 gas. Theoretical/experimental studies confirm that such excellent activity is attributed to the formed Bi-Hx intermediate that improves charge separation and reduces reaction barriers in CO2 reduction.


2021 ◽  
Author(s):  
Ding-Yuan Kuo ◽  
Brandi M. Cossairt

We report a versatile method to prepare intercalated transition metal dichalcogenides in a thin-film morphology. Metallocenes, alkylamines, and electron-proton transfer mediators are intercalated into MoS2 and WS2 using vacuum filtration.


2020 ◽  
Vol 117 (12) ◽  
pp. 6484-6490 ◽  
Author(s):  
Hanna Kwon ◽  
Jaswir Basran ◽  
Juliette M. Devos ◽  
Reynier Suardíaz ◽  
Marc W. van der Kamp ◽  
...  

In redox metalloenzymes, the process of electron transfer often involves the concerted movement of a proton. These processes are referred to as proton-coupled electron transfer, and they underpin a wide variety of biological processes, including respiration, energy conversion, photosynthesis, and metalloenzyme catalysis. The mechanisms of proton delivery are incompletely understood, in part due to an absence of information on exact proton locations and hydrogen bonding structures in a bona fide metalloenzyme proton pathway. Here, we present a 2.1-Å neutron crystal structure of the complex formed between a redox metalloenzyme (ascorbate peroxidase) and its reducing substrate (ascorbate). In the neutron structure of the complex, the protonation states of the electron/proton donor (ascorbate) and all of the residues involved in the electron/proton transfer pathway are directly observed. This information sheds light on possible proton movements during heme-catalyzed oxygen activation, as well as on ascorbate oxidation.


Sign in / Sign up

Export Citation Format

Share Document