muon spin
Recently Published Documents


TOTAL DOCUMENTS

1225
(FIVE YEARS 105)

H-INDEX

68
(FIVE YEARS 3)

Author(s):  
Zihao Zhu ◽  
Cheng Tan ◽  
Jian Zhang ◽  
Pabitra Kumar Biswas ◽  
A D Hillier ◽  
...  

Abstract Topological superconductivity is an exotic phenomenon due to the symmetry-protected topological surface state, in which a quantum system has an energy gap in the bulk but supports gapless excitations conned to its boundary. Symmetries including central and time-reversal, along with their relations with topology, are crucial for topological superconductivity. We report muon spin relaxation/rotation (μSR) experiments on a topological noncentrosymmetric superconductor PbTaSe2 to study its TRS and gap symmetry. Zero-field μSR experiments indicate the absence of internal magnetic eld in the superconducting state, consistent with previous μSR results. Furthermore, transverse-field μSR measurements reveals that the superconducting gap of PbTaSe2 is an isotropic three-dimensional fully-gapped single-band. The fully-gapped results can help understand the pairing mechanism and further classify the topological superconductivity in this system.


2022 ◽  
Vol 17 (01) ◽  
pp. P01017
Author(s):  
Jingyu Dong ◽  
Ziwen Pan ◽  
Zebin Lin ◽  
Zhe Wang ◽  
Zhengyang He ◽  
...  

Abstract An Experimental Muon Source (EMuS) has been proposed to conduct muon spin rotation/relaxation/resonance (μSR) measurements at China Spallation Neutron Source (CSNS). To make better use of muons in each pulse, a highly segmented μSR spectrometer with more than 2000 detector channels is under design. Due to such high granularity of detectors, multiple counting events generated from particle scattering or spiral motion of positrons in a strong longitudinal field should be carefully considered in the design. According to the simulation, long scintillators have a good capability of angular discrimination. Detectors with cuboid geometries are better than those with frustum shapes. The cuboid detector with a length of 50 mm is longer enough to get the optimal range of discrimination angle. In a real μSR spectrometer, detectors can be placed parallelly along the beam direction or pointing to the sample. A figure of merit (FoM) has been proposed to compare such two arrangements by integrating their impacts on multiple counts and total counting loss in zero and longitudinal fields. The outstanding performance of multiple counting rejection due to the angular discrimination capability makes the pointing arrangement achieve much higher FoM. The simulation results can provide good support for the design of the highly segmented μSR spectrometer.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3450
Author(s):  
Suci Winarsih ◽  
Faisal Budiman ◽  
Hirofumi Tanaka ◽  
Tadashi Adachi ◽  
Akihiro Koda ◽  
...  

The nano-size effects of high-Tc cuprate superconductor La2−xSrxCuO4 with x = 0.20 are investigated using X-ray diffractometry, Transmission electron microscopy, and muon-spin relaxation (μSR). It is investigated whether an increase in the bond distance of Cu and O atoms in the conducting layer compared to those of the bulk state might affect its physical and magnetic properties. The μSR measurements revealed the slowing down of Cu spin fluctuations in La2−xSrxCuO4 nanoparticles, indicating the development of a magnetic correlation at low temperatures. The magnetic correlation strengthens as the particle size reduces. This significantly differs from those observed in the bulk form, which show a superconducting state below Tc. It is indicated that reducing the particle size of La2−xSrxCuO4 down to nanometer size causes the appearance of magnetism. The magnetism enhances with decreasing particle size.


2021 ◽  
pp. 1-18
Author(s):  
Rustem Khasanov ◽  
Ross Urquhart ◽  
Matthias Elender ◽  
Konstantin Kamenev

2021 ◽  
Author(s):  
Ola Kenji Forslund ◽  
Daniel Andreica ◽  
Hiroto Ohta ◽  
Masaki Imai ◽  
Chishiro Michioka ◽  
...  

Abstract The ferromagnetic (FM) nature of the metallic LaCo2P2 was investigated with the positive muon spin rotation, relaxation and resonance (μ+SR) technique. Transverse and zero field μ+SR measurements revealed that the compound enters a long range FM ground state at TZFC = 135.00(1) K, consistent with previous studies. Based on the reported FM structure, the internal magnetic field was computed at the muon sites, which were predicted with first principles calculations. The computed result agree well with the experimental data. Moreover, although LaCo2P2 is a paramagnet at higher temperatures T > 160 K, it enters a short range ordered (SRO) magnetic phase for T ZF C < T ≤160 K. Measurements below the vicinity of T ZF C revealed that the SRO phase co-exists with the long range FM order at temperatures 124 K ≤T ≤T ZF C. Such co-existence is an intrinsic property and may be explained by an interplay between spin and lattice degree of freedoms.


Author(s):  
Kazuki Ohishi ◽  
Daisuke Igarashi ◽  
Ryoichi Tatara ◽  
Shoichiro Nishimura ◽  
Akihiro Koda ◽  
...  

2021 ◽  
Vol 242 (1) ◽  
Author(s):  
Iain McKenzie ◽  
Joseph Cannon ◽  
Danaan Cordoni-Jordan

2021 ◽  
Vol 104 (13) ◽  
Author(s):  
M. N. Wilson ◽  
T. J. Hicken ◽  
M. Gomilšek ◽  
A. Štefančič ◽  
G. Balakrishnan ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6730
Author(s):  
Eka Pratikna ◽  
Lusi Safriani ◽  
Nowo Riveli ◽  
Budi Adiperdana ◽  
Suci Winarsih ◽  
...  

Blended regio-regular P3HT–ZnO nanoparticles are a hybrid material developed as an active layer for hybrid solar cells. The study of the hopping mechanisms and diffusion rates of regio-regular P3HT–ZnO nanoparticles is significant for obtaining intrinsic charge transport properties that provide helpful information for preparing high-performance solar cells. The temperature dependences of the parallel and perpendicular diffusion rates in regio-regular P3HT–ZnO nanoparticles determined from muon spin relaxation measurements were investigated by applying various longitudinal fields. We investigated the effect of light irradiation on the diffusion rates in regio-regular P3HT–ZnO nanoparticles. We found that with increasing temperature, the parallel diffusion rate decreased, while the perpendicular diffusion rate increased. The ratio of the parallel to perpendicular diffusion rate (D‖/D⊥) can be used to indicate the dominant charge carrier hopping mechanism. Without light irradiation, perpendicular diffusion dominates the charge carrier hopping, starting at 25 K, with a ratio of 1.70×104, whereas with light irradiation, the perpendicular diffusion of the charge carrier starts to dominate at the temperature of 10 K, with a ratio of 2.40×104. It is indicated that the additional energy from light irradiation affects the diffusion, especially the charge diffusion in the perpendicular direction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
R. Fittipaldi ◽  
R. Hartmann ◽  
M. T. Mercaldo ◽  
S. Komori ◽  
A. Bjørlig ◽  
...  

AbstractMaterials with strongly correlated electrons often exhibit interesting physical properties. An example of these materials is the layered oxide perovskite Sr2RuO4, which has been intensively investigated due to its unusual properties. Whilst the debate on the symmetry of the superconducting state in Sr2RuO4 is still ongoing, a deeper understanding of the Sr2RuO4 normal state appears crucial as this is the background in which electron pairing occurs. Here, by using low-energy muon spin spectroscopy we discover the existence of surface magnetism in Sr2RuO4 in its normal state. We detect static weak dipolar fields yet manifesting at an onset temperature higher than 50 K. We ascribe this unconventional magnetism to orbital loop currents forming at the reconstructed Sr2RuO4 surface. Our observations set a reference for the discovery of the same magnetic phase in other materials and unveil an electronic ordering mechanism that can influence electron pairing with broken time reversal symmetry.


Sign in / Sign up

Export Citation Format

Share Document