low sulfidation
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 38)

H-INDEX

16
(FIVE YEARS 3)

Author(s):  
V. V. Stogny ◽  
G. A. Stogny

Abstract The article demonstrates that the placer gold content of the Vilyui Syneclise is governed by the regional structure of the crystalline basement of the Siberian Platform—the Baikal–Vilyui Paleoproterozoic belt, the boundaries and tectonics of which are substantiated by analysis of the gravitational field structure. The belt includes a system of basement blocks with a common northeastern strike, which form horsts (of the Suntar type) and grabens (of the Kempendyai type). The gold-bearing placers of the Vilyui Syneclise are mainly confined to the Suntar, Tyukyan, and Chybyda blocks of the belt, the metamorphic and igneous rocks of which were the primary gold sources in the sedimentary cover. The suture zone of the Baikal–Vilyui belt was very permeable to deep fluids responsible for gold migration. The types of possible primary gold sources (gold–platinoid, low-sulfidation gold-quartz, and gold–silver) reflect the peculiarities in the evolution of Early Precambrian gold during sedimentation in the Vilyui Syneclise. The areas controlled by the Suntar, Kempendyai, Tyukyan, Chybyda, and Khapchagai blocks of Early Precambrian rocks, which may contain gold objects, should be considered promising for buried gold placers in the Vilyui Syneclise.


2021 ◽  
Vol 921 (1) ◽  
pp. 012034
Author(s):  
F R Hakim ◽  
A Idrus

Abstract The East Motoling area is one of the prospect areas in the Minahasa region of North Sulawesi, which has indications of low sulfidation epithermal-type mineralization. The research was conducted as a preliminary study to determine the characteristics of geological conditions, alteration, and ore mineralization in the epithermal system. The research method is divided into two main parts, such as fieldwork including surface geological mapping (lithology, stratigraphy, geomorphology, structural geology, alteration and mineralization) and laboratory analysis methods including petrographic analysis. The stratigraphy of the study area consists of altered volcaniclastic breccia, altered lapilli tuff, altered tuff, limestone, welded lapilli tuff, and andesitic breccia. Volcaniclastic breccia, altered lapilli tuff, and altered tuff, member of the Volcanic Rock Formation which is Late – Middle Miocene age, are the host rock for ore mineralization and hydrotermal alteration process. There are 3 types of alterations that have developed, namely argillic (illite + quartz ± kaolinite), sericitic (sericite + illite ± chlorite), and propylitic (chlorite + epidote ± illite). The dextral slip fault with NW – SE trend present as a main control structure to formation of extention fracture/vein. The epithermal veins are relatively north-northeast – south-southwest, north-northwest – south-southeast, and northwest – southeast. The textures of the veins divided into 7 main groups, namely that is bladed-quartz, breccia, calcedony, colloform, comb, mold, and massive quartz. Ore mineralization is forms in the veins as pyrite and banded sulfide. Apart from that, the disseminated pyrite also limitedly found around the veins.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 714
Author(s):  
Caetano Juliani ◽  
Rafael Rodrigues de Assis ◽  
Lena Virgínia Soares Monteiro ◽  
Carlos Marcello Dias Fernandes ◽  
José Eduardo Zimmermann da Silva Martins ◽  
...  

This review paper aims to integrate geological, tectonic and metallogenetic data, including new data, and propose a regional model for the gold (and base metal) mineralization in the south Amazonian Craton to support the mineral exploration concerning magmatic–hydrothermal deposits. The Proterozoic evolution of the Amazonian Craton comprises the accretion of terrains to the Archean Carajás Mineral Province. In the Tapajós and Juruena mineral provinces, located at the south part of the Amazonian craton, a long-lived ocean–continent subduction event produced ca. 2.0 to 1.77 Ga continental magmatic arcs. Extensive lava flows, volcaniclastic, sedimentary, and plutonic rocks were originated during at least four major orogenic magmatic events (ca. 2.1, 1.9, 1.88, and 1.80 Ga) and two post- to anorogenic events (ca. 1.87 and 1.77 Ga). Gold mineralization occurs in: (i) alluvial/colluvial occurrences, (ii) orogenic carbonate–sulfide-rich quartz veins in shear zones, (iii) stockworks, veins, and dissemination in granites, (iv) contact of basic dikes, (v) well-preserved high-, intermediate- and low-sulfidation epithermal mineralization, and (vi) porphyry-like and intrusion-related gold systems associated with late- to post-orogenic epizonal granites. The estimated historical gold production, mainly in secondary deposits, is over 27 Moz at the Tapajós and 6 Moz at the Juruena provinces. A total resource of over 5 Moz Au is currently defined in several small to large primary gold deposits. Andesite to rhyolite, volcaniclastic, and clastic sedimentary rocks (1.96–1.88 Ga) host epithermal (high-, intermediate-, and low-sulfidation) Au–(Ag–Pb–Zn) mineralization, whereas Au–Cu and Cu–M–Au mineralization is hosted in sub-volcanic tonalitic to granitic plutons. Advanced argillic alteration (alunite, pyrophyllite, enargite) associated with high-sulfidation mineralization occurs in ring volcanoes around nested volcanic calderas. This zone grades outward to propylitic or chlorite alteration, often covered by silica caps with vuggy silica. Lava flows and volcaniclastic rocks within faults or associated with volcanic edifices and rhyolitic domes host low- and intermediate-sulfidation mineralization. Low-sulfidation alteration zones typically have adularia and illite or sericite. Chalcopyrite, sphalerite, galena, pyrite, digenite, and manganiferous calcite are related to intermediate-sulfidation gold mineralization. Late- to post-orogenic evolved oxidized I-type granitoids host alkalic-type epithermal and porphyry-like gold mineralization. Porphyry-style hydrothermal alteration is analogous to those of modern systems, with inner sodic and potassic (potassic feldspar ± biotite or biotite) alterations grading to propylitic, muscovite-sericite, chlorite–sericite, and chlorite alterations. Potassic alteration zones are the locus of Cu–Mo mineralization, and gold-rich zones occur in muscovite/sericite–quartz–pyrite alteration. The Paleoproterozoic epithermal and porphyry-like mineralization in these large provinces defines a new frontier for the exploration of world-class gold deposits in the worldwide Proterozoic arc-related magmatic terrains.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 634
Author(s):  
Călin Gabriel Tămaș ◽  
Mădălina Paula Andrii ◽  
Réka Kovács ◽  
Sergiu Drăgușanu ◽  
Béatrice Cauuet

We evaluated the significance of the iron and manganese content in sphalerite as a tool for distinguishing between low-sulfidation and intermediate-sulfidation epithermal deposits on the basis of new and previously published electron probe microanalyses data on the Roșia Montană epithermal ore deposit and available microchemical data from the Neogene epithermal ore deposits located in the Apuseni Mountains and Baia Mare region, Romania. Two compositional trends of the Fe vs. Mn content in sphalerite were delineated, a Fe-dominant and a Mn-dominant, which are poor in Mn and Fe, respectively. The overlapping compositional range of Fe and Mn in sphalerite in low-sulfidation and intermediate-sulfidation ores suggests that these microchemical parameters are not a reliable tool for distinguishing these epithermal mineralization styles.


2021 ◽  
Vol 54 (1E) ◽  
pp. 1-18
Author(s):  
Toe Oo ◽  
Agung Harijoko ◽  
Lucas Setijadji

The Kyaukmyet prospect is one of the principal epithermal gold prospects in the Monywa District, Central Myanmar; its gold- and base metal-bearing quartz veins contain around 3 g/t gold. Ore minerals are mainly hosted by volcanic and volcaniclastic rocks of the Late Oligocene to Middle Miocene Magyigon Formation. The distribution of magmatic intrusions in the area is controlled by ENE-WSW trending faults; these faults are likely related to ore mineralization. Common ore minerals at the Kyaukmyet prospect include pyrite, sphalerite, galena, chalcopyrite, and electrum. They occur in mineralized crustiform-textured brecciated quartz veins and banded (colloform) and massive quartz veins. Mineralized rock is accompanied by silicification and propylitic and argillic alterations. The alteration mineral assemblages include quartz, adularia, calcite, chlorite, illite/smectite, sericite, and illite. Fluid inclusions in the quartz veins have homogenization temperatures ranging from 148 °C to 304 °C and salinities from 0.35 wt % to 2.75 wt % NaCl equiv. The quartz in the mineralized quartz veins was most likely precipitated at a depth ranges165-256 m below the paleosurface. The precipitation of gold at the Kyaukmyet prospect may have been formed by mixing large amounts of meteoric fluid with small amounts of magmatic fluid. The coexistence of liquid-rich and vapor-rich inclusions and presence of adularia and bladed calcite indicate that fluid boiling is caused the main mechanism of ore formation. The vein textures, ore mineral assemblages, alteration minerals and fluid inclusion data suggest that the Kyaukmyet prospect is a polymetallic low-sulfidation epithermal gold deposit.


2021 ◽  
Vol 48 (1) ◽  
pp. 1
Author(s):  
José Cabello

A review of gold and gold bearing base metals deposits in Chile, indicate the existence of at least six different type of ore deposits, most largely formed during the Cenozoic with predominance in the Miocene. Mesozoic deposits are common but less relevant regarding their size and gold content. These hydrothermal ore deposits are genetically associated with subduction related Andean arc magmatism. Due to its relationship with episodic magmatism migrating eastward, there is a tendency for the deposits to be in distinct, north-south trending, belts with a progressive west to east decrease in mineralization age. After analysing 82 cases in total, main gold concentration can be assigned to high-sulfidation epithermal and porphyry type deposits. Low-sulfidation epithermal, IOCG and mesothermal type appears as less relevant. Gold bearing copper deposits constitute an important part of Chile’s total gold production. Both IOCG type but especially porphyry copper deposits are and will remain as a substantial source to supplement the future output of the gold in the country. The 82 deposits with their tonnage and grade studied, represent a total gold content of 11,662 t equivalent to 375 Moz, excluding past production for those exploited. A number of probable gold bearing base metals high tonnage deposits (IOCG and porphyry copper) do not include their gold content in public format, hence the number delivered could be estimated conservative. Methodical geochronological, ore types and zonation studies are required to better appreciate this metallogenic setting widening current understanding and future exploration results.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Panagiotis Voudouris ◽  
Marianna Kati ◽  
Andreas Magganas ◽  
Manuel Keith ◽  
Eugenia Valsami-Jones ◽  
...  

Active, shallow-water (2–10 m below sea level) and low temperature (up to 115 °C) hydrothermal venting at Paleochori Bay, nearshore Milos Island, Greece, discharges CO2 and H2S rich vapors (e.g., low-Cl fluid) and high-salinity liquids, which leads to a diverse assemblage of sulfide and alteration phases in an area of approximately 1 km2. Volcaniclastic detritus recovered from the seafloor is cemented by hydrothermal pyrite and marcasite, while semi-massive to massive pyrite-marcasite constitute mounds and chimney-like edifices. Paragenetic relationships indicate deposition of two distinct mineralogical assemblages related to the venting of high-Cl and low-Cl fluids, respectively: (1) colloform As- and Hg-bearing pyrite (Py I), associated with marcasite, calcite, and apatite, as well as (2) porous and/or massive As-rich pyrite (Py II), associated with barite, alunite/jarosite, and late-stage hydrous ferric oxides. Mercury, in the form of cinnabar, occurs within the As-rich pyrite (Py I) layers, usually forming distinct cinnabar-enriched micro-layers. Arsenic in colloform pyrite I shows a negative correlation with S indicating that As1− dominates in the pyrite structure suggesting formation from a relatively reducing As-rich fluid at conditions similar to low-sulfidation epithermal systems. On the contrary, As3+ dominates in the structure of porous to massive pyrite II suggesting deposition from a sulfate-dominated fluid with lower pH and higher fO2. Bulk sulfide data of pyrite-bearing hydrothermal precipitates also show elevated As (up to 2587 ppm) together with various epithermal-type elements, such as Sb (up to 274 ppm), Tl (up to 513 ppm), and Hg (up to 34 ppm) suggesting an epithermal nature for the hydrothermal activity at Paleochori Bay. Textural relationships indicate a contemporaneous deposition of As and Hg, which is suggested to be the result of venting from both high-salinity, liquid-dominated, as well as CO2- and H2S-rich vapor-dominated fluids that formed during fluid boiling. The CO2- and H2S-rich vapor that physically separated during fluid boiling from the high-salinity liquid led to calcite formation upon condensation in seawater together with the precipitation of As- and Hg-bearing pyrite I. This also led to the formation of sulfuric acid, thereby causing leaching and dissolution of primary iron-rich minerals in the volcaniclastic sediments, finally resulting in pyrite II precipitation in association with alunite/jarosite. The Paleochori vents contain the first documented occurrence of cinnabar on the seafloor in the Mediterranean area and provide an important link between offshore hydrothermal activity and the onshore mercury and arsenic mineralizing system on Milos Island. The results of this study therefore demonstrate that metal and metalloid precipitation in shallow-water continental arc environments is controlled by epithermal processes known from their subaerial analogues.


Sign in / Sign up

Export Citation Format

Share Document