repeated load triaxial
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 621
Author(s):  
Solomon Adomako ◽  
Christian John Engelsen ◽  
Rein Terje Thorstensen ◽  
Diego Maria Barbieri

Recycled Excavation Materials (REM) are becoming viable alternative construction resources due to their economic benefits. However, REM may be composed of weak rocks, e.g., phyllites, limiting the use in a base layer. The present paper attempts to further the knowledge of the mechanical performance of REM by performing Repeated Load Triaxial Tests (RLTT). REM are mixed with Recycled Phyllite Materials (RPM) in systematic blends of 0%, 25%, 50%, and 100%. The batches’ resilient modulus (MR) and permanent deformation (PD) characteristics were assessed to establish the maximum RPM allowed into REM while maintaining the required performance. Hicks and Monismith’s and Uzan’s models were used to characterize the stiffness behavior. A wide variation in the stiffness between the two materials was observed. Batches comprised of 0% RPM–100% REM and 25% RPM–75% REM showed high stiffness performance. The Coulomb model assessed the PD behavior, and the results showed a similar response for all batches. Unlike the stiffness, blended mixtures did not show sensitivity to increased RPM content in the PD. This study may help end-users to understand the performance of REM given the documented threshold on the allowable quantity of RPM in REM.


2021 ◽  
Vol 337 ◽  
pp. 03013
Author(s):  
Camila Kern ◽  
Wai Ying Yuk Gehling ◽  
Washington Peres Núñez

The influence of the variation of moisture content in the materials that make up the pavement has a negative impact on its performance. This variation in humidity is caused by inefficient drainage, oscillation of the water table, infiltrations, which affect the resistance and increase the deformability. The objective of this article is to evaluate the effect of moisture variation on the behavior of soils used in pavement subgrade from tests of resilience module. The subgrade of the highway BR-290/RS located in the state of Rio Grande do Sul/Brazil was evaluated. The repeated load triaxial equipment was used to perform tests of the Resilience Module (MR), varying the moisture content of the specimens by ± 2% in relation to the optimum humidity. There was a 70% decrease in MR comparing specimens above the optimum humidity with the ideal humidity conditions. A new MR equation was proposed that considers the variation in humidity, which showed high statistical significance. The results presented showed a great influence of the moisture content in soils, showing that the present article can contribute to a better understanding of the behavior of soils and a greater discussion about the effect of moisture variation in the dimensioning of pavements.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Wendel S. Cabral ◽  
Suelly H. A. Barroso ◽  
Samuel A. Torquato

The decreasing supply of soils with geotechnical parameters suitable for pavement designs is a visible problem in our environment. In order to establish more efficient designs and adequate construction criteria, it is essential to understand the performance of materials. This is a study of the permanent deformation (PD) of soil used in pavement layers, obtaining prediction models through the technique of artificial neural networks, in addition to the design of pavement structures using mechanistic-empirical and empirical methods. The multistage repeated load triaxial (RLT) test, as well as numerical analyses of stresses and displacements using the CAP3D program, was used. The results showed that both the test procedure and the prediction models performed satisfactorily in obtaining PD behavior. Moreover, designs using the methods adopted resulted in distinct structures, that is, thickness different from the granular pavement layers. It was concluded that the model and test procedure exhibit significant potential for characterizing and modeling the PD of granular materials.


Author(s):  
Kazi Moinul Islam ◽  
Sarah Gassman ◽  
Md Mostaqur Rahman

The resilient modulus (MR) of subgrade material is an important parameter in pavement design using the Mechanistic-Empirical Pavement Design Guide (MEPDG) and has a significant influence on pavement performance. MR can be obtained indirectly from falling weight deflectometer (FWD) data using a back-calculation tool (i.e., AASHTOWare 2017) or from empirical correlations with soil index properties. MR can also be obtained directly using repeated load triaxial tests (AASHTO T 307-99, 2017). In this study, the field test program included FWD tests and soil sampling. These field tests were performed on six asphalt pavement sections in South Carolina, U.S., to estimate the MR of the subgrade soil. This study involved extensive laboratory characterization of subgrade soils collected from underneath the pavement sections. Laboratory characterization included index tests (sieve analysis, Atterberg limits, specific gravity, moisture content, and standard Proctor density tests) on bulk samples and repeated load triaxial tests on thin-walled tube samples to obtain a direct measure of MR. Results show that the MR values found from the FWD data have similar trends to the laboratory-measured MR values. However, results from lab testing were 33%–75% lower than the back-calculated MR. Laboratory-measured MR, and back-calculated MR were used to determine a C-factor of 0.33, 0.25, and 0.29 for coarse-grained, fine-grained, and all types of soils, respectively. This parameter can be used to estimate resilient modulus for MEPDG Level 2 design inputs across South Carolina and similar geologic regions. The research studies will be facilitated by the local calibration and implementation of the MEPDG.


2020 ◽  
Vol 23 ◽  
pp. 100356 ◽  
Author(s):  
Arul Arulrajah ◽  
Hooman Baghban ◽  
Guillermo A. Narsilio ◽  
Suksun Horpibulsuk ◽  
Melvyn Leong

Author(s):  
Mingu Kang ◽  
Joon Han Kim ◽  
Issam I. A. Qamhia ◽  
Erol Tutumluer ◽  
Mark H. Wayne

This paper describes the use of the bender element (BE) shear wave measurement technology for quantifying the effectiveness of geogrid stabilization of unbound aggregate materials with improved mechanical properties from repeated load triaxial testing. Crushed stone aggregate specimens were prepared with three different gradations, that is, upper bound (UB), mid-range engineered (ENG), and lower bound, according to the dense graded base course gradation specification in Illinois. The specimens were compacted at modified Proctor maximum dry densities and optimum moisture contents. Two geogrids with different triaxial aperture sizes were placed at specimen mid-height, and unstabilized specimens with no geogrid were also prepared for comparison. To measure shear wave velocity, three BE pairs were placed at different heights above geogrid. Repeated load triaxial tests were conducted following the AASHTO T307 standard resilient modulus test procedure, while shear wave velocity was measured from the installed BE pairs. After initial specimen conditioning, and at low, intermediate, and high applied stress states, both the resilient moduli and accumulated permanent strains were determined to relate to the geogrid local stiffening effects in the specimens quantified by the measured shear wave velocities. The resilient modulus and shear wave velocity trends exhibited a directly proportional relationship, whereas permanent strain and shear wave velocity values were inversely related. The enhancement ratios calculated for the geogrid stabilized over the unstabilized specimens showed significant improvements in mechanical behavior for the UB and ENG gradations, and a maximum enhancement was achieved for the engineered gradation specimens stabilized with the smaller aperture geogrid.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Muhammad Arshad

Limited supplies of natural aggregates for highway construction, in addition to increasing processing costs, time, and environmental concerns, have led to the use of various reclaimed/recycled materials. Reclaimed asphalt pavement (RAP) and recycled concrete aggregate (RCA) have prospective uses in substantial amounts in base and subbase layers of flexible pavement in order to overcome the increasing issue of a shortage of natural aggregates. This research presents the development of an empirical model for the estimation of resilient modulus value (MR) on the basis of CBR values using experimental results obtained for 52 remoulded granular samples containing natural aggregates, RCA, and RAP samples. Statistical analysis of the suggested model shows promising results in terms of its strength and significance when t-test was applied. Additionally, experimental results also show that MR value increases in conjunction with an increase in RAP contents, while the trend for the CBR value is the opposite. Statistical analysis of simulation results using PerRoad and KenPave demonstrates that addition of RAP contents in the subbase layer of flexible pavements significantly improves its performance when considering resistance against rutting and fatigue. However, results of repeated load triaxial tests show that residual accumulative strain under a certain range of loading conditions increases substantially due to the addition of RAP materials, which may be disadvantageous to the serviceable life of the whole pavement structure.


Sign in / Sign up

Export Citation Format

Share Document