urgent computing
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 16)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
pp. 171-176
Author(s):  
Ю.И. Нечаев ◽  
Д.В. Никущенко

Рассматривается построение и анализ функций интерпретации моделей нестационарной динамики подводных объектов (ПО) новых поколений на основе функциональных пространств современной теории катастроф (СТК) [1] – [7]. Формальный аппарат концептуальных решений и принципов построения функций интерпретации реализован в нестационарной динамической среде в рамках принципа конкуренции. Процедуры функций интерпретации основаны на использовании различных моделей взаимодействия в зависимости от уровня действующих возмущений. Неопределенность и неполнота исходной информации в динамике взаимодействия ПО в нестационарной среде, определили подход к построению функций интерпретации при построении математического описания задач нестационарной динамики ПО на основе концепции мягких вычислений (Soft Computing) [7] и выявления «скрытых» знаний (Data Mining) [1]. Разработанные модели и алгоритмы интерпретации нестационарной динамики ПО реализованы в функциональном блоке моделирования многофункционального программного комплекса (МПК) динамической визуализации нестационарной динамики ПО в режиме экстренных вычислений (Urgent Computing – UC [6]. The construction and analysis of the interpretation functions of the models of unsteady dynamics of new generation an underwater vehicle (UV) based on the modern theory of disasters (STK) [1] - [7] are considered. The formal apparatus of conceptual solutions and principles of constructing interpretation functions is implemented in a non-stationary dynamic environment within the framework of the principle of competition. The procedures of the interpretation functions are based on the use of various interaction models depending on the level of acting disturbances. The uncertainty and incompleteness of the initial information on the dynamics of the interaction of underwater vehicles in a non-stationary environment determined the approach to constructing interpretation functions when constructing a mathematical description of the problems of non-stationary dynamics of underwater vehicles based on the concept of soft computing (Soft Computing) [7] and the identification of “hidden” knowledge (Data Mining) [1]. The developed models and algorithms for interpreting unsteady dynamics of submarines are implemented in the functional block for modeling a multifunctional software complex (MPC) for dynamic visualization of unsteady dynamics of underwater vehicles in emergency computing mode Urgent Computing [6].


2021 ◽  
Vol 118 (46) ◽  
pp. e2024891118
Author(s):  
Núria López ◽  
Luigi Del Debbio ◽  
Marc Baaden ◽  
Matej Praprotnik ◽  
Laura Grigori ◽  
...  

PRACE (Partnership for Advanced Computing in Europe), an international not-for-profit association that brings together the five largest European supercomputing centers and involves 26 European countries, has allocated more than half a billion core hours to computer simulations to fight the COVID-19 pandemic. Alongside experiments, these simulations are a pillar of research to assess the risks of different scenarios and investigate mitigation strategies. While the world deals with the subsequent waves of the pandemic, we present a reflection on the use of urgent supercomputing for global societal challenges and crisis management.


Author(s):  
Nick Brown ◽  
Rupert Nash ◽  
Piero Poletti ◽  
Giorgio Guzzetta ◽  
Mattia Manica ◽  
...  
Keyword(s):  

2021 ◽  
pp. 145-151
Author(s):  
Ю.И. Нечаев ◽  
О.Н. Петров

Рассмотрены особенности функционирования системы гибридного моделирования (Hybrid Modeling) динамики морских объектов при возникновении и развитии «потенциальной ямы» в эволюционирующей среде на основе мультипроцессорного программного комплекса. Процедуры построения системы гибридного моделирования выполнены в функциональных пространствах современной теории катастроф. Интеллектуальная поддержка вычислительных операций в системе гибридного моделирования осуществляется на основе современной компьютерной математики и логических моделей нечеткой формальной системы. Геометрическая интерпретация результатов моделирования и динамической визуализации поведения морского объекта в «потенциальной яме» обеспечивается в режиме экстренных вычислений (Urgent Computing). Приведены примеры реализации разработанной стратегии гибридного моделирования при контроле экстремальных ситуаций в бортовых интеллектуальных системах новых поколений. Рассмотрены динамические картины возникновения «потенциальной ямы» на основе когнитивной карты. Представлены результаты формального концептуального анализа при контроле «потенциальной ямы». The features of the functioning of the system of hybrid modeling of the dynamics of marine objects during the emergence and development of a "potential well" in an evolving environment based on a multiprocessor software package are considered. The procedures for constructing a hybrid modeling system are carried out in the functional spaces of the modern catastrophe theory. Intellectual support of computational operations in the hybrid modeling system is carried out on the basis of modern computer mathematics and logical models of a fuzzy formal system. Geometric interpretation of the results of modeling and dynamic visualization of the behavior of the marine object in the "potential well" is provided in the urgent computing mode. Examples of the implementation of the developed strategy of hybrid modeling for the control of extreme situations in onboard intelligent systems of new generations are given. The dynamic pictures of the emergence of a "potential well" based on a cognitive map are considered. The results of a formal conceptual analysis during the control of the "potential well" are presented.


2021 ◽  
Vol 11 (1) ◽  
pp. 117-125
Author(s):  
Yu.I. Nechaev ◽  

An ontological synthesis of models for interpreting non-stationary dynamics in onboard intelligence systems operating in the emergency computing mode (Urgent Computing - UC) is considered. The ontological system of a dynamic knowledge base is formulated on the basis of theoretical models of the modern catastrophe theory (СT). The analysis and forecast of the evolutionary dynamics of a non-stationary object is implemented in a multiprocessor computing environment. Within the framework of the ontological system, an approach to the interpretation of non-stationary dy-namics using fractal geometry and the theory of dynamical systems stability is formulated. The practical application of the developed ontology model is discussed in relation to the interpretation of the interaction of a marine dynamic object (MDO) with the external environment at a given time interval. The dynamic СT model determines the motion of the MDO system to the target attractor and in case of stability loss. Examples of the implementation of the ontological synthesis of non-stationary dynamics in safety systems for navigation and landing of ship-based aircraft are given.


2021 ◽  
Author(s):  
Marta Pienkowska ◽  
Juan Esteban Rodríguez ◽  
Josep de la Puente ◽  
Andreas Fichtner

<p>Seismic wave propagation is currently computationally prohibitive at high frequencies relevant for earthquake engineering or for civil protection purposes (up to 10 Hz). Developments of computational high-performance computing (HPC) infrastructures, however, will render routine executions of high-frequency simulations possible, enabling new approaches to assess seismic hazard - such as Seismic Urgent Computing (UC) in the immediate aftermath of an earthquake. The high spatial resolution of near-real time synthetic wavefields could complement existing live data records where dense seismic networks are present or provide an alternative to live data in regions with low coverage. However, time to solution for local near-field simulations accounting for frequencies above 1 Hz, as well as availability of substantial computational resources pose significant challenges that are incompatible with the requirements of decision makers. Moreover, the simulations require fine tuning of the parameters, as uncertainties in the underlying velocity model and in earthquake source information translate into uncertainties in final results. Estimating such uncertainties on ground motion proxies is non-trivial from a scientific standpoint, especially for the higher frequencies that remain an uncharted territory. In this talk we wish to address some of these key challenges and present our progress in the design and development of a prototype of a Seismic UC service. In the long run, we hope to demonstrate that deterministic modelling of ground motions can indeed in the future contribute to the short-term assessment of seismic hazard.  </p>


2021 ◽  
Author(s):  
Yu. I. Nechaev

Conceptual solutions for constructing a hybrid simulation (HS) system for interpreting behavior of the marine dynamic objects (MDO) in an evolving medium are discussed. The analysis is carried out in the functional spaces of behavior and control of the modern catastrophe theory (MCT). The theoretical basis for the implementation of the multifunctional model of the interpretation of HS determines the principle of structural and parametric synthesis of neurodynamic models under conditions of uncertainty based on the hierarchical structure of the software package. The analysis of behavior MDO and the choice of a solution in a neurodynamic environment is carried out on the basis of ensemble forecast and a matrix of strategic decisions. The interpretation of MDO behavior in HS systems on the base neural-fuzzy and multi-agent environment (MMS) is carried out as part of the Big Data processing strategy for large volumes of data un the regime of urgent computing (UC).


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 17557-17571
Author(s):  
Mulya Agung ◽  
Yuta Watanabe ◽  
Henning Weber ◽  
Ryusuke Egawa ◽  
Hiroyuki Takizawa

Author(s):  
В.А. Бондарев ◽  
В.А. Волкогон ◽  
Ю.И. Нечаев ◽  
И.Р. Рагулина

В работе рассматривается теоретический базис реализации поведения морских безэкипажных судов в нестационарной среде на основе современной теории катастроф (СТК), интегрирующей интеллектуальные технологии и высокопроизводительные вычисления в рамках мультифункционального программного комплекса (МПК). Стратегия управления транспортным потоком (ТП) определяет построение и интерпретацию поведения безэкипажных судов на основе центра дистанционного управления (ЦДУ). Интеллектуальная поддержка (ИП) процедур безэкипажного управления в ЦДУ обеспечивается с помощью многофункционального программного комплекса. Практическое приложение разработанной технологии безэкипажного управления ориентировано на использование гибридного моделирования, больших объемов данных (Big Data) в режиме экстренных вычислений (Urgent Computing – UC). Представлен новый подход интерпретации процессов и явлений, характеризующих эволюционную динамику безэкипажных морских судов в отличие от парадигмы безэкипажного управления, используемой в зарубежных странах. Рассмотрены примеры моделирования эволюционной динамики безэкипажных судов в различных условиях эксплуатации: при прохождении судна ледового поля со сложными образованиями; движение судна на ограниченном фарватере; виртуальное моделирование безэкипажного судна под воздействием морского волнения с частотным спектром. The paper considers the theoretical basis for the implementation of the behavior of seagoing unmanned vessels in a non-stationary environment based on the modern theory of catastrophes, which integrates intellectual technologies and high-performance computing within the framework of a multifunctional program complex]. The traffic control strategy determines the construction and interpretation of the behavior of unmanned vessels based on the remote control center (RCC). Intelligent support of crewless control procedures in the RCC is provided using a multifunctional program complex (MPС). The practical application of the developed technology of unmanned control is focused on the use of hybrid modeling, large amounts of data (Big Data) in the emergency computing mode (Urgent Computing - UC). A new approach to interpreting the processes and phenomena that characterize the evolutionary dynamics of unmanned sea vessels, in contrast to the unmanned control paradigm used in foreign countries, is presented. The examples of modeling the evolutionary dynamics of unmanned vessels in various operating conditions are considered: when a vessel passes an ice field with complex formations; movement of the vessel on a limited fairway; virtual simulation of an unmanned vessel under the influence of sea waves with a frequency spectrum.


Author(s):  
Viktor Baluta ◽  
Yuri Nechaev ◽  
Vladimir Osipov

The article deals with the issues of developing an axiomatic basis and interpreting conflict situations in conditions of high uncertainty based on the dynamic theory of catastrophes. Control over conflict situations is provided using applied modeling at the expense of the supercomputer center through system integration of technologies and tools for processing large amounts of current information. Functional components of the center for applied simulation implement dynamic visualization and development of management decisions. The key factor in ensuring the safety of critical facilities in a complex conflict situation is the speed of assessment of the situation and the development of adequate management decisions for the implementation of the response. Adequate management is based on experience, as a rule, obtained experimentally in the course of physical modeling of impacts (exercises, trainings, experiments, etc.), and accumulated in the form of a knowledge base of the information and analytical decision support system of the center for applied simulation.


Sign in / Sign up

Export Citation Format

Share Document