strained materials
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
K. Thamilarasan ◽  
P.K. Chidambaram ◽  
A. Ponshanmugakumar ◽  
V. Bharani
Keyword(s):  

2019 ◽  
Vol 14 (2) ◽  
pp. 211-216
Author(s):  
Ren Yuan ◽  
Jian-Jun Song ◽  
Yang Wen ◽  
Li-Xia Zhao ◽  
He-Ming Zhang ◽  
...  

2018 ◽  
Vol 98 (21) ◽  
Author(s):  
Daniil A. Kitchaev ◽  
Irene J. Beyerlein ◽  
Anton Van der Ven
Keyword(s):  

2015 ◽  
Vol 112 (40) ◽  
pp. 12332-12337 ◽  
Author(s):  
Chuan Fei Guo ◽  
Qihan Liu ◽  
Guohui Wang ◽  
Yecheng Wang ◽  
Zhengzheng Shi ◽  
...  

Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated loads in practical applications. Here we show that optimizing topology and/or tuning adhesion of metal nanomeshes can significantly improve stretchability and eliminate strain fatigue. The ligaments in an Au nanomesh on a slippery substrate can locally shift to relax stress upon stretching and return to the original configuration when stress is removed. The Au nanomesh keeps a low sheet resistance and high transparency, comparable to those of strain-free indium tin oxide films, when the nanomesh is stretched to a strain of 300%, or shows no fatigue after 50,000 stretches to a strain up to 150%. Moreover, the Au nanomesh is biocompatible and penetrable to biomacromolecules in fluid. The superstretchable transparent conductors are highly desirable for stretchable photoelectronics, electronic skins, and implantable electronics.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Zhang Chao ◽  
Xu Da-Qing ◽  
Liu Shu-Lin ◽  
Liu Ning-Zhuang

Uniaxial strain technology is an effective way to improve the performance of the small size CMOS devices, by which carrier mobility can be enhanced. TheE-krelation of the valence band in uniaxially strained Si is the theoretical basis for understanding and enhancing hole mobility. The solving procedure of the relation and its analytic expression were still lacking, and the compressive results of the valence band parameters in uniaxially strained Si were not found in the references. So, theE-krelation has been derived by taking strained Hamiltonian perturbation into account. And then the valence band parameters were obtained, including the energy levels at Γ point, the splitting energy, and hole effective masses. Our analytic models and quantized results will provide significant theoretical references for the understanding of the strained materials physics and its design.


2011 ◽  
Vol 181-182 ◽  
pp. 364-369
Author(s):  
Cheng Wang ◽  
He Ming Zhang ◽  
Rong Xi Xuan ◽  
Hui Yong Hu

Si-based strained technology is currently an important topic of concern in the microelectronics field. The stress-induced enhancement of electron mobility contributes to the improved performance of Si-based strained devices. In this paper, Based on both the electron effective mass and the scattering rate models for strained-Si1-xGex/Si (101), an analytical electron mobility model for biaxial compressive strained-Si1-xGex /Si (101) is presented. The results show that the stress doesn’t make the electron mobility increased, but the electron mobility for [100] and [001] orientations decrease with increasing Ge fraction x, especially for [010] orientation expresses a sharp decrease. This physical phenomenon can be explained as: Although the applied stress (the higher the Ge fraction, the greater the applied stress) can enhance the electron mobility, alloy disorder scattering rate markedly increase. Overall the electron mobility decreases instead. The above result suggests that not all the mobilities for Si-based strained materials enhance with the stress applied. For the biaxial strained-SiGe material represented by Ge fraction, the effect of alloy disorder scattering on the enhancement of mobility must be concerned. The result can provide theoretical basis for the understanding of the improved physical characterizations and the enhanced mobility for Si-based strained materials.


ACS Nano ◽  
2011 ◽  
Vol 5 (7) ◽  
pp. 5532-5542 ◽  
Author(s):  
Deborah M. Paskiewicz ◽  
Shelley A. Scott ◽  
Donald E. Savage ◽  
George K. Celler ◽  
Max G. Lagally

Sign in / Sign up

Export Citation Format

Share Document