nitrided layer
Recently Published Documents


TOTAL DOCUMENTS

246
(FIVE YEARS 77)

H-INDEX

16
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7766
Author(s):  
Matthias Steinbacher ◽  
Stefanie Hoja

To achieve a core strength that meets the requirements during service life, components to be nitrided are subjected to a pre-heat treatment. Since a higher strength prior to nitriding also has a positive effect on the achievable strength in the nitrided layer, an optimization of the pre-heat treatment may lead to better service characteristics of nitrided components. For this purpose, different optimizations of pre-heat treatment were investigated on the nitriding and quenching and tempering steels EN31CrMoV9 and EN42CrMo4 (AISI4140). One strategy was a change of the austenitization temperature for EN31CrMoV9 from 870 °C to 950 °C in order to solve the coarse carbides of the as-delivered state and realize a finer distribution of the carbides in the quenched and tempered structure. This special treatment lead to a higher hardness compared to the conventional treatment. The second investigated pre-heat treatment variant was a bainitic treatment instead of quenching and tempering. The bainitic initial microstructure increased the diffusion depth compared to conventionally quenched and tempered specimens. In addition the maximum hardness of the nitrided layer, the core hardness was significantly higher on the specimens with the bainitic microstructure. During subsequent nitriding, however, the bainite is tempered and loses some of its hardness.


2021 ◽  
Vol 98 ◽  
pp. 19-24
Author(s):  
Thanh Nguyen Van ◽  
◽  
Linh Nguyen Thi ◽  
Anh Pham Hoang ◽  
Trung Trinh Van ◽  
...  

As-supplied SUS420 stainless steel was annealed at 880 °C for1 h and quenched (1040 °c, 30 min), followed by tempering at 530 °c for 1 h. The sample surface after tempering was polished with different roughness levels by mechanical grinding. Samples in the states of as-annealed, as-quenched and as-tempered samples as well as ground tempered ones with different surface roughness were gas nitrided with NH3 gas at 520 °c for 5 h. The microstructure and mechanical properties of SUS420 steel before and after the heat and surface treatments were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, and micro-hardness testing. The results show that if the natural oxide layer on the surface of the SUS420 samples was not removed, the nitriding process was very difficult or even imposible. The annealed steel gave the highest nitriding depth but low surface hardness. The samples after quenching and/or tempering had lower nitriding depth but higher hardness. The surface hardness of the as-supplied steel (333 HV) decreased with annealing (181 HV). After quenching, tempering, and gas nitriding, the values were 632, 560 and > 1000 HV, respectively. The samples after nitriding showed the appearance of fine CrN phase in the nitrided layer. The highest nitriding depth (125 pm) was obtained for the annealed samples, and subsequently decreased for the quenched samples and tempered samples. The lower the roughness of the sample, the higher is the hardness. The nitrided layer thickness tended to increase as the roughness decreased.


2021 ◽  
pp. 115-121
Author(s):  
V.A. Belous ◽  
Yu.A. Zadneprovskiy ◽  
I.S. Domnich

In the method of nitriding elements, various methods of their thermal heating are used. The simplest heating method in ion-plasma nitriding is heating by bombarding the surface first with low-energy gas ions and then with metal ions with energies up to several kiloelectronvolt. Elements exposed to ion bombardment have a welldeveloped surface that is free from contaminants and facilitates the diffusion of nitrogen into the depth of the metal during nitriding. The paper studies the effect of various preliminary heating methods on the nitriding depth in the complex ion-plasma hardening technology of 25CrMoVA steel. A JSM 7000-1F scanning electron microscope equipped with an X-ray spectral energy dispersive microanalysis attachment was used to diagnose changes occurring on the surface of the samples and at depth; the hardness was measured using a Nanoindentor G200 device. The preliminary heating of the samples was carried out both with the use of bombardment with Ti or Mo ions, and without its direct effect on the heated surface. In the experiment, differences in the depth of hardening of the nitrided layer of steel are observed when it is heated in different ways. When bombarded with Mo ions, the greatest depths of hardening were obtained in comparison with other preliminary heating conditions. It is shown that these differences are associated with the features of the morphology of the steel surface formed as a result of sputtering processes. The formation of nitride compounds in its surface layer can serve as a barrier that slows down the penetration of nitrogen into the metal. It is shown that with complex treatment in the process of deposition of a nitride coating on the surface of nitrided steel, an additional increase in the depth of hardening of the nitrided layer occurs.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1551
Author(s):  
Alexander Metel ◽  
Tatiana Tarasova ◽  
Evgenii Gutsaliuk ◽  
Roman Khmyrov ◽  
Sergei Egorov ◽  
...  

The structure and physical–mechanical properties of products made from powders of corrosion-resistant steel 12X18H10T by the laser-beam powder bed fusion (LB-PBF) and subsequent ion-plasma nitriding in the work were investigated. Comparative studies of the physical mechanical properties of specimens made by the LB-PBF and conventional method from steel of the same grade were carried out. The density of the specimens and the coefficient of linear thermal expansion (CLTE) after the LB-PBF are almost the same as those of the conventionally manufactured specimens. Our analysis of the obtained dilatograms in the temperature range from 20 to 600 °C showed that the CLTE of steel after the LB-PBF is within acceptable limits (18.6 × 10−6 1/°C). Their hardness, tensile strength, yield strength and elongation are higher than those of a conventionally manufactured specimen. The phase composition and structure of specimens of steel 12X18H10T made by the LB-PBF after the process of ion-plasma nitriding were investigated. The obtained results show that the mode of ion-plasma nitriding used in this case (stage 1—570 °C for 36 h; stage 2—540 °C for 12 h) does not lead to deterioration of the characteristics of the selected steel. A technological process for the manufacture of modified tooling from 12X18H10T steel by the LB-PBF was developed. It protects the surfaces that are not subject to nitriding and makes it possible to obtain a uniform high-quality nitrided layer on the working surface of the part made from spheroidal graphite iron.


2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Marek Hawryluk ◽  
Marzena Lachowicz ◽  
Marta Janik ◽  
Jacek Ziemba ◽  
Zbigniew Gronostajski

AbstractThe study constitutes an analysis of the durability of dies used in the first operation of producing valve forgings from chromium–nickel steel (NCF 3015) for motor trucks. The average durability of the dies (subjected to standard thermal treatment and nitriding) in this operation equals about 800 forgings. To perform an in-depth analysis of the effect of the nitrided layer thickness (0.1 mm and 0.2 mm) and the tool material (W360 and QRO90) on the possibilities of increasing the die durability, complex studies were carried out, which included: a macroscopic analysis combined with 3D scanning, microstructural examinations using a scanning microscope and a metallographic microscope, as well as hardness measurements. A minimum of three tools were tested for different variants, and for each of them, one representative die was selected for detailed examinations. The research showed the presence of abrasive wear, thermo-mechanical fatigue and traces of adhesive wear as well as plastic deformation on the surface of the working impressions. Also observed was the effect of the extruded material sticking to the tools (high friction and the presence of intermetallic phases in the extruded material) and the forging being blocked in the smallest section of the die, which is a critical factor causing a production shutdown and the necessity of tool replacement. The highest mean durability equalling 2600 forgings was obtained for the dies with a lower carbon content and a higher content of vanadium and the nitrided layer thickness at the level of 0.2 mm. The lowest mean durability (after one forging item) was recorded for the dies made of steel with a higher carbon content and a higher chromium content, forming less stable compound carbides and the thickness layer at the level of 0.1 mm.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1122
Author(s):  
Dongjing Liu ◽  
Yuan You ◽  
Mufu Yan ◽  
Hongtao Chen ◽  
Rui Li ◽  
...  

In order to explore the effect of the addition of rare earth (RE) to a steel microstructure and the consequent performance of a nitrided layer, plasma nitriding was carried out on 38CrMoAl steel in an atmosphere of NH3 at 550 °C for 4, 8, and 12 h. The modified layers were characterized using an optical microscope (OM), a microhardness tester, X-ray diffraction (XRD), a scanning electron microscope (SEM), a transmission electron microscope (TEM), and an electrochemical workstation. After 12 h of nitriding without RE, the modified layer thickness was 355.90 μm, the weight gain was 3.75 mg/cm2, and the surface hardness was 882.5 HV0.05. After 12 h of RE nitriding, the thickness of the modified layer was 390.8 μm, the weight gain was 3.87 mg/cm2, and the surface hardness was 1027 HV0.05. Compared with nitriding without RE, the ε-Fe2-3N diffraction peak was enhanced in the RE nitriding layer. After 12 h of RE nitriding, La, LaFeO3, and a trace amount of Fe2O3 appeared. The corrosion rate of the modified layer was at its lowest (15.089 × 10−2 mm/a), as was the current density (1.282 × 10−5 A/cm2); therefore, the corrosion resistance improved.


2021 ◽  
Vol 3 (56) ◽  
pp. 42-51
Author(s):  
Petr A. VITYAZ ◽  
◽  
Maksim V. SOTNIKOV ◽  
Aleksandr G. SIDORENKO ◽  
Vladimir I. MOISEENKO ◽  
...  

The analysis of the used steels for nitrided parts is carried out. On the basis of a new methodology for increasing the strength of structural steels and parts, new scientific approaches and practical solutions are proposed and considered for the creation of gear wheels strengthened by nitriding both when using aluminum containing steels and a new material, 40ХМФА (40KhMFA) steel, that does not contain aluminum. To improve the efficiency and manufacturability of parts production from aluminum-containing 38Х2МЮА (38Kh2MYuA) steel, widely used in mechanical engineering, a fundamentally new technology of preliminary heat treatment of part blanks, “incomplete quenching”, has been developed, which provides both an increase in the machinability and accuracy of large-sized gear wheels, and an increase in strength due to the elimination of flaking of nitrided layer. The research results are presented on 40ХМФА (40KhMFA) steel, which does not contain aluminum, has increased heat resistance, hardenability and workability of parts, as well as the characteristics of the hardened layer. The nitrided layer of gears with a thickness of 0.5–0.7 mm does not contain brittle components, which, with a core hardness of 300–320 HB, also excludes its flaking and subsequent destruction of parts. The use of 40ХМФА (40KhMFA) steel makes it possible to solve the problems of reliability and life of large-sized nitrided gears, but it is also promising for the entire range of gears with internal gearing, as well as parts of movable spline gearings and fine-modular gears in order to replace carburizing with nitriding.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1050
Author(s):  
Yuan You ◽  
Rui Li ◽  
Mufu Yan ◽  
Jihong Yan ◽  
Hongtao Chen ◽  
...  

The plasma nitriding of 3Cr13 steel occurred at 450 °C for 4, 8 and 12 h in NH3 with and without rare earth (RE). The nitrided layers were characterized using an OM, SEM, TEM, XRD, XPS, microhardness tester and electrochemical workstation. The modified layer, with and without La, are composed of a compound layer and diffusion layer from surface to core. After the addition of La during nitriding, the maximum increase of layer thickness, mass gain and average microhardness was 15.6%, 35.8% and 212.50HV0.05, respectively. With the increase of the proportion of ε-Fe2-3N, the passivation zone of the corrosion resistance curve increases from 2.436 to 3.969 V, the corrosion current density decreases, the corrosion potential and pitting potential both increase, and, consequently, the corrosion resistance is significantly improved. Most of the surface microstructures of the nitrided layer was refined by the addition of La. The presence of La reduces the N content in the modified layer, which accelerates the diffusion of N atoms and, thus, accelerates the nitriding process.


Sign in / Sign up

Export Citation Format

Share Document