linear accelerators
Recently Published Documents


TOTAL DOCUMENTS

850
(FIVE YEARS 142)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Vol 12 (2) ◽  
pp. 600
Author(s):  
Serenella Russo ◽  
Silvia Bettarini ◽  
Barbara Grilli Leonulli ◽  
Marco Esposito ◽  
Paolo Alpi ◽  
...  

High-energy small electron beams, generated by linear accelerators, are used for radiotherapy of localized superficial tumours. The aim of the present study is to assess the dosimetric performance under small radiation therapy electron beams of the novel PTW microSilicon detector compared to other available dosimeters. Relative dose measurements of circular fields with 20, 30, 40, and 50 mm aperture diameters were performed for electron beams generated by an Elekta Synergy linac, with energy between 4 and 12 MeV. Percentage depth dose, transverse profiles, and output factors, normalized to the 10 × 10 cm2 reference field, were measured. All dosimetric data were collected in a PTW MP3 motorized water phantom, at SSD of 100 cm, by using the novel PTW microSilicon detector. The PTW diode E and the PTW microDiamond were also used in all beam apertures for benchmarking. Data for the biggest field size were also measured by the PTW Advanced Markus ionization chamber. Measurements performed by the microSilicon are in good agreement with the reference values for all the tubular applicators and beam energies within the stated uncertainties. This confirms the reliability of the microSilicon detector for relative dosimetry of small radiation therapy electron beams collimated by circular applicators.


2022 ◽  
Vol 17 (01) ◽  
pp. P01011
Author(s):  
I.V. Konoplev ◽  
S.A. Bogacz ◽  
Y. Shashkov ◽  
M.A. Gusarova

Abstract Energy-frontier accelerators provide powerful tools performing high precision measurements confirming the fundamentals of the physics and broadening new research horizons. Such machines are either driven by circular or linear accelerators. The circular machines, having the centre-of-mass (CM) energy values reaching 200 GeV (for leptons) and above, experience beam energy loss and quality dilution, for example, due to synchrotron radiation, limiting the overall CM energy achievable and requiring a constant energy top-up to compensate the loss and the beam quality dilution. Linear colliders overcome these limitations, while the finite capabilities of generating high average current beams limits the luminosity. This is partially compensated by the quality of the colliding beams. In this work, we suggest a novel design of circular-linear accelerator based on the merging of the “non-emitting”, low-energy storage rings and energy recovery linear accelerators. We suggest using the recently considered dual-axis asymmetric cavities to enable the operation of such a system, and in particular the energy recovery from spent, high-intensity beams. The machine considered, under the scope of the SNOWMASS-2021 initiative, can be potentially used to reach ultimate energy frontiers in high-energy physics as well as to drive next generation light sources. The merging of circular and linear systems, and applications of dual axes cavities, should allow the maintaining of high beam quality, high luminosity, and high energy efficiency, while offering a flexible energy management and opening clear opportunity for reducing the running cost. We note that the numbers shown in the paper are for illustration purpose and can be improved further.


2021 ◽  
Vol 12 (1) ◽  
pp. 386
Author(s):  
Xiaowen Zhu ◽  
Claude Marchand ◽  
Olivier Piquet ◽  
Michel Desmons

We describe and compare two optimized design options of RF linear accelerators with different resonant frequencies at 162.5 MHz (f0) and 325 MHz (2∙f0). The RFQ + DTL linacs have been designed to provide 13 MeV acceleration to a proton beam for achieving a fast neutron yield of not lower than 1013 n/s via 9Be(p, n)9B reaction in pulsed-mode operation. Our design studies show that none of the two options is better than the other, but that the choice of operating frequency will mainly be determined by the accelerator length and RF cost consideration. This study can serve as a basis for the design of an initial stage of a new high brilliance Compact Accelerator-driven Neutron Source (CANS), aiming to use neutron scattering techniques for studying material properties in fundamental physics, materials science, nuclear energy, as well as for industries and societal challenges.


2021 ◽  
pp. 260-270
Author(s):  
Sergey M. Polozov ◽  
Vladimir I. Rashchikov

Conventionally, electron guns with thermionic cathodes or field-emission cathodes are used for research or technological linear accelerators. RF-photoguns are used to provide the short electron bunches which could be used for FEL’s of compact research facilities to generate monochromatic photons. Low energy of emitted electrons is the key problem for photoguns due to high influence of Coulomb field and difficulties with the first accelerating cell simulation and construction. Contrary, plasma sources, based on the laser-plasma wakefield acceleration, have very high acceleration gradient but rather broad energy spectrum compared with conventional thermoguns or field-emission guns. The beam dynamics in the linear accelerator combines the laser-plasma electron source and conventional RF linear accelerator is discussed in this paper. Method to capture and re-accelerate the short picosecond bunch with extremely broad energy spread (up to 50 %) is presented. Numerical simulation shows that such bunches can be accelerated in RF linear accelerator to the energy of 50 MeV with output energy spread not higher than 1 % .


Author(s):  
Serenella Russo ◽  
Silvia Bettarini ◽  
Barbara Grilli Leonulli ◽  
Marco Esposito ◽  
Paolo Alpi ◽  
...  

High-energy small electron beams generated by linear accelerators are used for radiotherapy of localized superficial tumors. The aim of the present study is to assess the dosimetric performance under small radiation therapy electron beams of the novel PTW microSilicon detector by comparison with commercially available dosimeters. Relative dose measurements of circular fields with 20, 30, 40 and 50 mm aperture diameters were performed for 4 to 12 MeV energy range of electron beams generated by an Elekta Synergy linac. Percentage depth dose, transverse profiles and output factors normalized to the 10 × 10 cm2 reference field were measured. All dosimetric data were collected in a PTW MP3 motorized water phantom at SSD of 100cm by using the novel PTW microSilicon detector. The PTW diode E and the PTW microDiamond were also used in all beam aperture for benchmarking. Data for the biggest field size were also measured by the PTW Advanced Markus ionization chamber.Measurements performed by the microSilicon are in good agreement with the reference values for all the tubular applicators and beam energies, within the stated uncertainties. This confirms the reliability of the microSilicon detector for relative dosimetry of small radiation therapy electron beams collimated by tubular applicators.


2021 ◽  
Vol 9 (B) ◽  
pp. 1730-1738
Author(s):  
Kamal Saidi ◽  
Othmane Kaanouch ◽  
Hanae El Gouach ◽  
Mohamed Reda Mesradi ◽  
Mounir Mkimel ◽  
...  

Electron beam measurement comparison between TrueBeam STx® and Clinac iX® established. Data evaluation of eMC-calculated and measured for TrueBeam STx® performed. Dosimetric parameters measured including depth dose curves for each applicator, percentage depth dose (PDDs) curves without applicator, the profile in-air for a large field size 40×40 cm2, and the Absolute Dose (cGy/MU) for each applicator using a large water phantom (PTW, Freiburg, Germany), employing Roos and Markus plane-parallel ionization chambers. The data were examined for five electron beams of Varian’s TrueBeam STx® and Clinac iX® machines. A comparison between measurement PDDs and calculated by the Eclipse electron Monte Carlo (eMC) algorithm was performed to validate Truebeam STx® commissioning. The measured data indicated that electron beam PDDs from the TrueBeam STx® machine are well matched to those from Clinac iX® machine. The quality index R50 for applicator 15×15 cm2 was in the tolerance intervals. However, Surface dose (Ds) increases with increasing energy for both accelerators. Comparisons between the measured and eMC-calculated values revealed that the R100, R90, R80, and R50 values mostly agree within 5 mm. Measured and calculated bremsstrahlung tail Rp correlates well statistically. Ds agrees mostly within 2%. Electron beams were successfully validated for TrueBeam STx®, a good agreement between modeled and measured data was observed.


Author(s):  
Yu‐Yun Noh ◽  
Jihun Kim ◽  
Jin Sung Kim ◽  
Han‐Back Shin ◽  
Min Cheol Han ◽  
...  
Keyword(s):  

Author(s):  
Na Hye Kwon ◽  
Dong Oh Shin ◽  
Jin Sung Kim ◽  
Jaeryong Yoo ◽  
Min Seok Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document