ketoacid dehydrogenase
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 20)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 511-511
Author(s):  
Gagandeep Mann

Abstract Objectives Plasma levels of branched-chain amino acids (BCAAs) and their metabolites, branched-chain ketoacids (BCKAs) are increased in insulin resistance, a condition that can lead to type 2 diabetes mellitus (T2DM). BCAA catabolic enzymes are downregulated in diabetes and obesity. We previously showed that leucine and KIC suppressed insulin-stimulated glucose uptake in L6 myotubes. We have also shown that knocking down branched-chain ketoacid dehydrogenase (BCKD), an enzyme that decarboxylates BCKAs, suppressed insulin-stimulated glucose uptake. The objective of this study is to analyze how stimulating BCAA catabolic flux, by depleting branched-chain ketoacid dehydrogenase kinase (BDK), a negative regulator of BCKD, affects insulin sensitivity. We hypothesize that upregulating BCAA catabolism will increase insulin-stimulated glucose transport and attenuate insulin resistance. Methods L6 myoblasts were cultured in differentiation media for 4 days. On day 4 of differentiation, cells were transfected with control (SCR) or branched-chain ketoacid dehydrogenase kinase (BDK) siRNA oligonucleotides. Forty-eight hours later, myotubes were starved of serum- and amino acids for 3 hours then supplemented with or without KIC (200 mM) for 30 minutes. After, cells were incubated with or without insulin (100 nM) for 20 minutes. They were then harvested for immunoblotting or used for glucose transport assay. Results There was a 32% increase in insulin-stimulated glucose uptake with BDK depletion. KIC suppressed insulin-stimulated glucose uptake by 25% in control (SCR) cells; this suppression was attenuated in cells depleted of BDK. BDK depletion also reduced KIC-induced IRS-1Ser612 phosphorylation by 64% but had no effect on AktSer473 phosphorylation. Conclusions BDK depletion increased insulin-stimulated glucose transport, and attenuated KIC-induced suppression of insulin-stimulated glucose uptake, suggesting that increasing BCKD activity can be a therapeutic strategy against insulin resistance. Funding Sources Natural Science and Research Council (NSERC)


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jacquelyn M. Walejko ◽  
Bridgette A. Christopher ◽  
Scott B. Crown ◽  
Guo-Fang Zhang ◽  
Adrian Pickar-Oliver ◽  
...  

AbstractBranched-chain amino acids (BCAA) and their cognate α-ketoacids (BCKA) are elevated in an array of cardiometabolic diseases. Here we demonstrate that the major metabolic fate of uniformly-13C-labeled α-ketoisovalerate ([U-13C]KIV) in the heart is reamination to valine. Activation of cardiac branched-chain α-ketoacid dehydrogenase (BCKDH) by treatment with the BCKDH kinase inhibitor, BT2, does not impede the strong flux of [U-13C]KIV to valine. Sequestration of BCAA and BCKA away from mitochondrial oxidation is likely due to low levels of expression of the mitochondrial BCAA transporter SLC25A44 in the heart, as its overexpression significantly lowers accumulation of [13C]-labeled valine from [U-13C]KIV. Finally, exposure of perfused hearts to levels of BCKA found in obese rats increases phosphorylation of the translational repressor 4E-BP1 as well as multiple proteins in the MEK-ERK pathway, leading to a doubling of total protein synthesis. These data suggest that elevated BCKA levels found in obesity may contribute to pathologic cardiac hypertrophy via chronic activation of protein synthesis.


2021 ◽  
Vol 478 (4) ◽  
pp. 765-776
Author(s):  
Megan C. Blair ◽  
Michael D. Neinast ◽  
Zoltan Arany

Oxidation of branched-chain amino acids (BCAAs) is tightly regulated in mammals. We review here the distribution and regulation of whole-body BCAA oxidation. Phosphorylation and dephosphorylation of the rate-limiting enzyme, branched-chain α-ketoacid dehydrogenase complex directly regulates BCAA oxidation, and various other indirect mechanisms of regulation also exist. Most tissues throughout the body are capable of BCAA oxidation, and the flux of oxidative BCAA disposal in each tissue is influenced by three key factors: 1. tissue-specific preference for BCAA oxidation relative to other fuels, 2. the overall oxidative activity of mitochondria within a tissue, and 3. total tissue mass. Perturbations in BCAA oxidation have been implicated in many disease contexts, underscoring the importance of BCAA homeostasis in overall health.


2020 ◽  
Vol 13 (8) ◽  
pp. dmm046755

ABSTRACTFirst Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms, helping early-career researchers promote themselves alongside their papers. Hui-Ying Tsai and Shih-Cheng Wu are co-first authors on ‘Loss of the Drosophila branched-chain α-ketoacid dehydrogenase complex results in neuronal dysfunction’, published in DMM. Hui-Ying is a research assistant in the lab of Chun-Hong Chen at National Health Research Institutes, Zhunan, Taiwan. Her research interest is modeling the human neurological disease maple syrup urine disease in Drosophila, assessing behavior as well as brain damage. Shih-Cheng is a postdoc in the same lab, with interests in modeling human disease and immunometabolism.


2020 ◽  
Author(s):  
Eduardo M. Bruch ◽  
Pierre Vilela ◽  
Norik Lexa-Sapart ◽  
Lu Yang ◽  
Bertrand Raynal ◽  
...  

ABSTRACTα-ketoacid dehydrogenase complexes are large, tripartite enzymatic machineries carrying out key reactions in central metabolism. Extremely conserved across the tree of life, they have so far all considered to be structured around a high molecular weight hollow core, consisting of up to 60 subunits of the acyltransferase component. We provide here evidence that Actinobacteria break the rule by possessing an acetyltranferase component reduced to its minimally active, trimeric unit, characterized by a unique C-terminal helix that affects the oligomerization and the full 3D architecture of the complex. We show that this unique feature is characterized by an insertion, which together with OdhA is found spread over Actinobacteria. This phylum includes organisms or great interest for agriculture, industrial bio-production and many human pathogens as Mycobacterium tuberculosis. Moreover, components of this complex are key for M. tuberculosis survival in the human host, and its unique core and protein-protein interactions represent potentially “druggable” targets.


2020 ◽  
Vol 13 (8) ◽  
pp. dmm044750 ◽  
Author(s):  
Hui-Ying Tsai ◽  
Shih-Cheng Wu ◽  
Jian-Chiuan Li ◽  
Yu-Min Chen ◽  
Chih-Chiang Chan ◽  
...  

ABSTRACTMaple syrup urine disease (MSUD) is an inherited error in the metabolism of branched-chain amino acids (BCAAs) caused by a severe deficiency of the branched-chain α-ketoacid dehydrogenase (BCKDH) complex, which ultimately leads to neurological disorders. The limited therapies, including protein-restricted diets and liver transplants, are not as effective as they could be for the treatment of MSUD due to the current lack of molecular insights into the disease pathogenesis. To address this issue, we developed a Drosophila model of MSUD by knocking out the dDBT gene, an ortholog of the human gene encoding the dihydrolipoamide branched chain transacylase (DBT) subunit of BCKDH. The homozygous dDBT mutant larvae recapitulate an array of MSUD phenotypes, including aberrant BCAA accumulation, developmental defects, poor mobile behavior and disrupted L-glutamate homeostasis. Moreover, the dDBT mutation causes neuronal apoptosis during the developmental progression of larval brains. The genetic and functional evidence generated by in vivo depletion of dDBT expression in the eye indicates severe impairment of retinal rhabdomeres. Further, the dDBT mutant shows elevated oxidative stress and higher lipid peroxidation accumulation in the larval brain. Therefore, we conclude from in vivo evidence that the loss of dDBT results in oxidative brain damage that may lead to neuronal cell death and contribute to aspects of MSUD pathology. Importantly, when the dDBT mutants were administrated with Metformin, the aberrances in BCAA levels and motor behavior were ameliorated. This intriguing outcome strongly merits the use of the dDBT mutant as a platform for developing MSUD therapies.This article has an associated First Person interview with the joint first authors of the paper.


2020 ◽  
Vol 42 (2) ◽  
Author(s):  
Nguyen Thi Thu Huong ◽  
Vu Chi Dung ◽  
Nguyen Thi Thanh Ngan ◽  
Nguyen Kim Thoa ◽  
Nguyen Huy Hoang

Maple syrup urine disease (MSUD) is an autosomal recessive inherited metabolic disorder caused by malfunction of the branched-chain α-ketoacid dehydrogenase complex (BCKDH). This enzyme complex participates in the catalyzing metabolisms of the branched-chain α-ketoacids, the second step of the degradation of branched-chain amino acids. Impaired activities of the BCKAD complex lead to an increase of the levels of branched- chain amino acid such as leucine, valine, and isoleucine in the blood. In children with maple syrup urine disease, catalysis of the metabolisms of some amino acids failed to be implemented, leading to an accumulation of the amino acids which has been shown as one of the causes of neurological complications, intellectual disabilities, and nervous paralysis or even death. Pathogenic mutations normally occur in BCKDHA, BCKDHB, DBT and DLD genes which encode the E1α, E1β, and E2 subunits of the BCKDH complex. In the present study, a homozygous mutation in the BCKDHB gene (c. 1016C>T) in a pediatric patient with MSUD diagnosed at The National Hospital of Pediatrics was identified using whole exome and Sanger sequencing methods. As a result, the inheritance of the homozygous mutation related to MSUD in BCKDHB gene within the pedigree of the patient’s family was determined. The results indicated that the mutation in the BCKDHB gene was inherited from both of the patient’s parents. In addition, this finding provides an important scientific basis to  researches on MSUD in the Vietnamese population. 


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 642-642
Author(s):  
Glory Madu ◽  
Olasunkanmi Adegoke

Abstract Objectives Branched-chain amino acids (BCAAs) are essential amino acids that are crucial for skeletal muscle anabolism. Thus, alterations in their levels are associated with muscle atrophic diseases such as cancer, chronic inflammatory and neurological disorders. Others have linked impairments in BCAA metabolism to the development of insulin resistance and its sequelae. Compared to the effects of theses amino acids, much less is known on how impairment in BCAA catabolism affects skeletal muscle. BCAA catabolism starts with the reversible transamination by the mitochondrial enzyme branched-chain aminotransferase 2 (BCAT2). This is followed by the irreversible carboxylation, catalyzed by branched-chain ketoacid dehydrogenase (BCKD) complex. We have shown that BCAT2 and BCKD are essential for the differentiation of skeletal myoblasts into myotubes. Here, we investigated the effect of depletion of BCAT2 or of E1a subunit of BCKD in differentiated myotubes. Methods On day 4 of differentiation, L6 myotubes were transfected with the following siRNA oligonucleotides: scrambled (control), BCAT2, or E1a subunit of BCKD. Results Forty-eight hours after transfection, compared to control or BCAT2 siRNA group, we observed improved myotube structure in BCKD-depleted cells. BCKD depletion augmented myofibrillar protein levels: myosin heavy chain (MHC, 2-fold) and tropomyosin (4-fold), P < 0.05, n = 3. To further analyze the increase in myofibrillar protein content, we examined signaling through mTORC1 (mechanistic target of rapamycin complex 1), a vital complex necessary for skeletal muscle anabolism. BCKD depletion increased the phosphorylation of mTORC1 upstream activator AKT (52%, P < 0.05, n = 3), and of mTORC1 downstream substrates by 25%-86%, consistent with the increase in myofibrillar proteins. Finally, in myotubes treated with the catabolic cytokine (tumor necrosis factor-a), BCKD depletion tended to increase the abundance of tropomyosin (a myofibrillar protein). Conclusions We showed that depletion of BCKD enhanced myofibrillar protein content and anabolic signaling.  If these data are confirmed in vivo, development of dietary and other interventions that target BCKD abundance or functions may promote muscle protein anabolism in individuals with muscle wasting conditions. Funding Sources MHRC, NSERC York U.


2020 ◽  
Author(s):  
Lia Heinemann-Yerushalmi ◽  
Lital Bentovim ◽  
Neta Felsenthal ◽  
Ron Carmel Vinestock ◽  
Nofar Michaeli ◽  
...  

AbstractPyruvate dehydrogenase kinases (PDK1-4) inhibit the TCA cycle by phosphorylating pyruvate dehydrogenase complex (PDC). Here, we show that the PDK family is dispensable for the survival of murine embryonic development and that BCKDK serves as a compensatory mechanism by inactivating PDC.First, we knocked out all fourPdkgenes one by one. Surprisingly,Pdktotal KO embryos developed and were born in expected ratios, but died by postnatal day 4 due to hypoglycemia or ketoacidosis.Finding that PDC was phosphorylated in these embryos suggested that another kinase compensates for the PDK family. Bioinformatic analysis implicated brunch chain ketoacid dehydrogenase kinase (Bckdk), a key regulator of branched chain amino acids (BCAA) catabolism. Indeed, knockout ofBckdkand thePdkfamily led to loss of PDC phosphorylation, increment in PDC activity, elevation of Pyruvate flux into the TCA and early embryonic lethality. These findings reveal a new regulatory crosstalk hardwiring BCAA and glucose catabolic pathways, which feed the TCA cycle.


Sign in / Sign up

Export Citation Format

Share Document