matrix optimization
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 47)

H-INDEX

15
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6944
Author(s):  
Julio A. Paredes ◽  
Jaime C. Gálvez ◽  
Alejandro Enfedaque ◽  
Marcos G. Alberti

This paper seeks to optimize the mechanical and durability properties of ultra-high performance concrete (UHPC). To meet this objective, concrete specimens were manufactured by using 1100 kg/m3 of binder, water/binder ratio 0.20, silica sand and last generation of superplasticizer. Silica fume, metakaolin and two types of nano silica were used for improving the performances of the concrete. Additional mixtures included 13 mm long OL steel fibers. Compressive strength, electrical resistivity, mercury intrusion porosimetry tests, and differential and thermogravimetric thermal analysis were carried out. The binary combination of nano silica and metakaolin, and the ternary combination of nano silica with metakaolin and silica fume, led to the best performances of the UHPC, both mechanical and durable performances.


Author(s):  
Julio Paredes ◽  
Jaime C. Gálvez ◽  
Alejandro Enfedaque ◽  
Marcos G. Alberti

This paper seeks to optimize the mechanical and durability properties of ultra-high performance concrete (UHPC). To meet this objective, concrete specimens were manufactured by using 1,100 kg/m3 of binder, water/binder ratio 0.20, silica sand and last generation of superplasticizer. Silica fume, metakaolin and two types of nano silica were used for improving the performances of the concrete. Additional mixtures included 13mm long OL steel fibers. Compressive strength, electrical resistivity, mercury intrusion porosimetry tests and differential and thermogravimetric thermal analysis were carried out. The binary combination of nano silica and metakaolin, and the ternary combination of nano silica with metakaolin and silica fume, led to the best performances of the UHPC, both mechanical and durable performances.


Author(s):  
Jianhe Du ◽  
Zekun Wang ◽  
Yang Zhang ◽  
Yalin Guan ◽  
Libiao Jin

AbstractHybrid precoding achieves a compromise between the sum rate and hardware complexity of millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems. However, most prior works on multi-user hybrid precoding only consider the full-connected structure. In this paper, a novel multi-user hybrid precoding algorithm is proposed for the sub-connected structure. Based on the improved successive interference cancellation (SIC), the analog precoding matrix optimization problem is decomposed into multiple analog precoding sub-matrix optimization problems. Further, a near-optimal analog precoder is designed through factorizing the precoding sub-matrix for each sub-array. Furthermore, digital precoding is designed according to the block diagonalization (BD) technology. Finally, the water-filling power allocation method is used to further improve the communication quality. The extensive simulation results demonstrate that the sum rate of the proposed algorithm is higher than the existing hybrid precoding methods with the sub-connected structure, and has higher energy efficiency compared with existing approaches. Moreover, the proposed algorithm is closer to the state-of-the-art optimization approach with the full-connected structure. In addition, the simulation results also verify the effectiveness of the proposed hybrid precoding design of the uniform planar array (UPA).


2021 ◽  
Author(s):  
Kun Lu ◽  
Hongwen Yang

Abstract Non-orthogonal multiple access (NOMA) can support the rapid development of the Internet of Things (IoT) with its potential to support high spectral efficiency and massive connectivity. The low-density superposition modulation (LDSM) scheme is one of the NOMA schemes and uses the sparse signature matrix to reduce multiple access interferences (MAI). In order to improve the NOMA system performance in practice, this paper focuses on designing the sparse signature matrix with a large girth for LDSM under imperfect channel state information (CSI). Based on the orthogonal pilot and linear minimum mean square error (LMMSE) estimation, the LDSM optimized by bare-bone particle swarm optimization (BBPSO) algorithm has a larger girth and can gather more accurate information in the process of iterative decoding convergence. An extrinsic information transfer (EXIT) chart analysis is designed for the LDSM-OFDM system as a theoretical analysis tool. The simulation results show that the optimized LDSM outperforms the reference LDSM system, bringing about a 0.5 dB performance gain.


Sign in / Sign up

Export Citation Format

Share Document