robotic sensor networks
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Viet-Anh Le ◽  
Linh Nguyen ◽  
Truong X. Nghiem

Adaptive sampling in a resource-constrained mobile robotic sensor network for monitoring a spatial phenomenon is a fundamental but challenging problem. In applications where a Gaussian Process is employed to model a spatial field and then to predict the field at unobserved locations, the adaptive sampling problem can be formulated as minimizing the negative log determinant of a predicted covariance matrix, which is a non-convex and highly complex function. Consequently, this optimization problem is typically addressed in a grid-based discrete domain, although it is combinatorial NP-hard and only a near-optimal solution can be obtained. To overcome this challenge, we propose using a proximal alternating direction method of multipliers (Px-ADMM) technique to solve the adaptive sampling optimization problem in a continuous domain. Numerical simulations using a real-world dataset demonstrate that the proposed PxADMM- based method outperforms a commonly used grid-based greedy method in the final model accuracy.


2021 ◽  
Author(s):  
Viet-Anh Le ◽  
Linh Nguyen ◽  
Truong X. Nghiem

Adaptive sampling in a resource-constrained mobile robotic sensor network for monitoring a spatial phenomenon is a fundamental but challenging problem. In applications where a Gaussian Process is employed to model a spatial field and then to predict the field at unobserved locations, the adaptive sampling problem can be formulated as minimizing the negative log determinant of a predicted covariance matrix, which is a non-convex and highly complex function. Consequently, this optimization problem is typically addressed in a grid-based discrete domain, although it is combinatorial NP-hard and only a near-optimal solution can be obtained. To overcome this challenge, we propose using a proximal alternating direction method of multipliers (Px-ADMM) technique to solve the adaptive sampling optimization problem in a continuous domain. Numerical simulations using a real-world dataset demonstrate that the proposed PxADMM- based method outperforms a commonly used grid-based greedy method in the final model accuracy.


2021 ◽  
Author(s):  
Viet-Anh Le ◽  
Linh Nguyen ◽  
Truong X. Nghiem

Adaptive sampling in a resource-constrained mobile robotic sensor network for monitoring a spatial phenomenon is a fundamental but challenging problem. In applications where a Gaussian Process is employed to model a spatial field and then to predict the field at unobserved locations, the adaptive sampling problem can be formulated as minimizing the negative log determinant of a predicted covariance matrix, which is a non-convex and highly complex function. Consequently, this optimization problem is typically addressed in a grid-based discrete domain, although it is combinatorial NP-hard and only a near-optimal solution can be obtained. To overcome this challenge, we propose using a proximal alternating direction method of multipliers (Px-ADMM) technique to solve the adaptive sampling optimization problem in a continuous domain. Numerical simulations using a real-world dataset demonstrate that the proposed PxADMM- based method outperforms a commonly used grid-based greedy method in the final model accuracy.


2021 ◽  
Author(s):  
David Saldaña ◽  
Renato Assunção ◽  
M. Ani Hsieh ◽  
Mario F. M. Campos ◽  
Vijay Kumar

Sign in / Sign up

Export Citation Format

Share Document