injury threshold
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Benjamin C. Gadomski ◽  
Bradley J. Hindman ◽  
Mitchell I. Page ◽  
Franklin Dexter ◽  
Christian M. Puttlitz

Background In a closed claims study, most patients experiencing cervical spinal cord injury had stable cervical spines. This raises two questions. First, in the presence of an intact (stable) cervical spine, are there tracheal intubation conditions in which cervical intervertebral motions exceed physiologically normal maximum values? Second, with an intact spine, are there tracheal intubation conditions in which potentially injurious cervical cord strains can occur? Methods This study utilized a computational model of the cervical spine and cord to predict intervertebral motions (rotation, translation) and cord strains (stretch, compression). Routine (Macintosh) intubation force conditions were defined by a specific application location (mid-C3 vertebral body), magnitude (48.8 N), and direction (70 degrees). A total of 48 intubation conditions were modeled: all combinations of 4 force locations (cephalad and caudad of routine), 4 magnitudes (50 to 200% of routine), and 3 directions (50, 70, and 90 degrees). Modeled maximum intervertebral motions were compared to motions reported in previous clinical studies of the range of voluntary cervical motion. Modeled peak cord strains were compared to potential strain injury thresholds. Results Modeled maximum intervertebral motions occurred with maximum force magnitude (97.6 N) and did not differ from physiologically normal maximum motion values. Peak tensile cord strains (stretch) did not exceed the potential injury threshold (0.14) in any of the 48 force conditions. Peak compressive strains exceeded the potential injury threshold (–0.20) in 3 of 48 conditions, all with maximum force magnitude applied in a nonroutine location. Conclusions With an intact cervical spine, even with application of twice the routine value of force magnitude, intervertebral motions during intubation did not exceed physiologically normal maximum values. However, under nonroutine high-force conditions, compressive strains exceeded potentially injurious values. In patients whose cords have less than normal tolerance to acute strain, compressive strains occurring with routine intubation forces may reach potentially injurious values. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


Author(s):  
Wilfrid Calvin ◽  
Fei Yang ◽  
Sebe A Brown ◽  
Angus L Catchot ◽  
Whitney D Crow ◽  
...  

Abstract Widespread field-evolved resistance of bollworm [Helicoverpa zea (Boddie)] to Cry1 and Cry2 Bt proteins has threatened the utility of Bt cotton for managing bollworm. Consequently, foliar insecticide applications have been widely adopted to provide necessary additional control. Field experiments were conducted across the Mid-South and in Texas to devise economic thresholds for foliar insecticide applications targeting bollworm in cotton. Bt cotton technologies including TwinLink (TL; Cry1Ab+Cry2Ae), TwinLink Plus (TLP; Cry1Ab+Cry2Ae+Vip3Aa), Bollgard II (BG2; Cry1Ac+Cry2Ab), Bollgard 3 (BG3; Cry1Ac+Cry2Ab+Vip3Aa), WideStrike (WS; Cry1Ac+Cry1F), WideStrike 3 (WS3; Cry1Ac+Cry1F+Vip3Aa), and a non-Bt (NBT) variety were evaluated. Gain threshold, economic injury level, and economic thresholds were determined. A 6% fruiting form injury threshold was selected and compared with preventive treatments utilizing chlorantraniliprole. Additionally, the differences in yield from spraying bollworms was compared among Bt cotton technologies. The 6% fruiting form injury threshold resulted in a 25 and 75% reduction in insecticide applications relative to preventive sprays for WS and BG2, respectively. All Bt technologies tested in the current study exhibited a positive increase in yield from insecticide application. The frequency of yield increase from spraying WS was comparable to that of NBT. Significant yield increases due to insecticide application occurred less frequently in triple-gene Bt cotton. However, their frequencies were close to the dual-gene Bt cotton, except for WS. The results of our study suggest that 6% fruiting form injury is a viable threshold, and incorporating a vetted economic threshold into an Integrated Pest Management program targeting bollworm should improve the sustainability of cotton production.


2021 ◽  
pp. 1-25
Author(s):  
P. Agustin Boeri ◽  
J. Bryan Unruh ◽  
Kevin E. Kenworthy ◽  
Laurie E. Trenholm ◽  
Esteban F. Rios

Herbicide management information is lacking for recently developed turf-type bahiagrass germplasm. The objective of this study was to evaluate the herbicide tolerance of nine experimental bahiagrass genotypes compared to the industry standard ‘Argentine’. The experimental entries included Argentine and ‘Wilmington’ mutants, and wild-type breeding lines. Plants were grown under greenhouse conditions, and twelve herbicides were applied at 1 and 2 times labeled rates. Bentazon, bromoxynil, carfentrazone + 2,4-D + MCPP + dicamba, and carfentrazone were classified as safe. Fluroxypyr, halosulfuron, and triclopyr + clopyralid reduced growth >50% when applied at twice the label rate. Fenoxaprop, sulfentrazone + imazethapyr, and thiencarbazone + iodosulfuron + dicamba reduced growth and caused turfgrass injury above an acceptable threshold (≥20%). In general, the Argentine mutants showed greater herbicide injury compared to the Wilmington-mutants. Although metsulfuron exceeded the acceptable injury threshold and stopped growth in all the genotypes, Argentine and genotype WT6 were the least injured by this herbicide. The experimental genotype WT6 consistently showed the greatest herbicide tolerance. Except for one genotype (WT4), the experimental genotypes responded similarly or better than Argentine to the tested herbicides, except for metsulfuron.


2021 ◽  
Vol 49 (4) ◽  
pp. 1125-1127
Author(s):  
Lauren A. Duma ◽  
Mark T. Begonia ◽  
Barry Miller ◽  
Stefan M. Duma
Keyword(s):  

2020 ◽  
Vol 28 (S2) ◽  
Author(s):  
Kodai Kitagawa ◽  
Yoshiki Nishisako ◽  
Takayuki Nagasaki ◽  
Sota Nakano ◽  
Mitsumasa Hida ◽  
...  

Caregivers experience low back pain because of patient handling such as supporting standing-up. The lumbar load of a caregiver depends on the required force for patient handling motions. If the relationship between the required force and the lumbar load is quantitatively clarified, it may be useful for preventing low back pain in caregivers. In this study, we investigated the quantitative relationships between the required force and lumbar loads such as vertebral stress and muscle activity in supporting standing-up by computational musculoskeletal simulation. First, a musculoskeletal model of a caregiver was prepared, and then the model performed simulated supporting standing-up motions. The vertical load used as the required force was placed on the upper limb of the model. The compressive/shear stress of the vertebral (L4–L5) and muscle activities of spinae erector muscle group were recorded as the lumbar load. The results showed that there are highly significant correlations between the required force (r > 0.9, p < 0.01). In addition, regression equations for predicting each lumbar load by the required force with highly determination coefficients (R2 > 0.9) were obtained from these relationships. Furthermore, we found that when the required force was more than 120 N, the compression stresses of the vertebral exceeded injury threshold (3400 N) by the regression equation. These regression equations contribute to quantitatively consider lumbar loads of caregiver during patient handling based on injury thresholds and the required force.


Author(s):  
Faezeh Eskandari ◽  
Zahra Rahmani ◽  
Mehdi Shafieian

A more Accurate description of the mechanical behavior of brain tissue could improve the results of computational models. While most studies have assumed brain tissue as an incompressible material with constant Poisson’s ratio of almost 0.5 and constructed their modeling approach according to this assumption, the relationship between this ratio and levels of applied strains has not yet been studied. Since the mechanical response of the tissue is highly sensitive to the value of Poisson’s ratio, this study was designed to investigate the characteristics of the Poisson’s ratio of brain tissue at different levels of applied strains. Samples were extracted from bovine brain tissue and tested under unconfined compression at strain values of 5%, 10%, and 30%. Using an image processing method, the axial and transverse strains were measured over a 60-s period to calculate the Poisson’s ratio for each sample. The results of this study showed that the Poisson’s ratio of brain tissue at strain levels of 5% and 10% was close to 0.5, and assuming brain tissue as an incompressible material is a valid assumption at these levels of strain. For samples under 30% compression, this ratio was higher than 0.5, which could suggest that under strains higher than the brain injury threshold (approximately 18%), tissue integrity was impaired. Based on these observations, it could be concluded that for strain levels higher than the injury threshold, brain tissue could not be assumed as an incompressible material, and new material models need to be proposed to predict the material behavior of the tissue. In addition, the results showed that brain tissue under unconfined compression uniformly stretched in the transverse direction, and the bulging in the samples is negligible.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 16-17
Author(s):  
Ashley Ling ◽  
Taylor Krause ◽  
Bradley Heins ◽  
Nancy Hinkle ◽  
Dean Pringle ◽  
...  

Abstract Disturbing the non-symbiotic relationship between horn flies and cattle is of economic, health, and animal welfare importance. Reliance on management and insecticides has proven inadequate. In the United States, horn flies are estimated to cause more than $1 billion in economic losses on pastured cattle annually. Although insecticides provide temporary control, their efficacy is hampered by several factors. Intensive insecticide use has led to horn fly resistance and decreased predation on horn flies by other insects. Due to the cost and logistic complexity of measuring fly resistance traits under commercial conditions, the genetic basis of these traits remains largely unknown. Only a few heritability estimates are available based on small-scale studies. Currently, the economic injury threshold (EIT) due to horn fly abundance (onset of production decay) is set at around 200 flies for beef cattle. This threshold is largely heuristically set. Additionally, the rate of decay in performance as a function of fly abundance after injury onset is unknown. It is also likely that EIT is breed and animal specific. Data used in this study was collected during the summer of 2019. Animals were not treated or managed in any way to control horn flies prior to data collection. Animals were assessed subjectively and based on image counts for horn fly abundance. Estimates of heritability of horn fly abundance ranged between 0.14 and 0.22 for subjective and image-based phenotypes. The lowest heritability was for the subjective assessment, likely due to the excessive variation between evaluators. Changepoint model-based analysis showed that EIT is variable between sire families, ranging from 265 to 413 flies. Furthermore, there was significant difference in the decay of performance after the onset of injury. The rate of decay ranged between -0.0003 and -0.00018. Collectively, these results indicate the potential to improve horn fly resistance/tolerance using genetic tools.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Venkatasivasai Sujith Sajja ◽  
Jonathan K. Statz ◽  
LCDR Peter B. Walker ◽  
Irene D. Gist ◽  
Donna M. Wilder ◽  
...  

Abstract At present, there are no set guidelines establishing cumulative limits for blast exposure numbers and intensities in military personnel, in combat or training operations. The objective of the current study was to define lung injury, pathology, and associated behavioral changes from primary repeated blast lung injury under appropriate exposure conditions and combinations (i.e. blast overpressure (BOP) intensity and exposure frequency) using an advanced blast simulator. Male Sprague Dawley rats were exposed to BOP frontally and laterally at a pressure range of ~ 8.5–19 psi, for up to 30 daily exposures. The extent of lung injury was identified at 24 h following BOP by assessing the extent of surface hemorrhage/contusion, Hematoxylin and Eosin staining, and behavioral deficits with open field activity. Lung injury was mathematically modeled to define the military standard 1% lung injury threshold. Significant levels of histiocytosis and inflammation were observed in pressures ≥ 10 psi and orientation effects were observed at pressures ≥ 13 psi. Experimental data demonstrated ~ 8.5 psi is the threshold for hemorrhage/contusion, up to 30 exposures. Modeling the data predicted injury risk up to 50 exposures with intensity thresholds at 8 psi for front exposure and 6psi for side exposures, which needs to be validated further.


2020 ◽  
Vol 148 (1) ◽  
pp. 108-121 ◽  
Author(s):  
Michael A. Ainslie ◽  
Michele B. Halvorsen ◽  
Roel A. J. Müller ◽  
Tristan Lippert

Sign in / Sign up

Export Citation Format

Share Document