stromal microenvironment
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 43)

H-INDEX

27
(FIVE YEARS 2)

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhuo Yu ◽  
Jianfeng Guo ◽  
Yun Liu ◽  
Menglin Wang ◽  
Zhengsheng Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) developed in fibrotic liver does not respond well to immunotherapy, mainly due to the stromal microenvironment and the fibrosis-related immunosuppressive factors. The characteristic of liver sinusoidal endothelial cells (LSECs) in contributing to fibrosis and orchestrating immune response is responsible for the refractory to targeted therapy or immunotherapy of HCC. We aim to seek a new strategy for HCC treatment based on an old drug simvastatin which shows protecting effect on LSEC. Method The features of LSECs in mouse fibrotic HCC model and human HCC patients were identified by immunofluorescence and scanning electron microscopy. The effect of simvastatin on LSECs and hepatic stellate cells (HSCs) was examined by immunoblotting, quantitative RT-PCR and RNA-seq. LSEC-targeted delivery of simvastatin was designed using nanotechnology. The anti-HCC effect and toxicity of the nano-drug was evaluated in both intra-hepatic and hemi-splenic inoculated mouse fibrotic HCC model. Results LSEC capillarization is associated with fibrotic HCC progression and poor survival in both murine HCC model and HCC patients. We further found simvastatin restores the quiescence of activated hepatic stellate cells (aHSCs) via stimulation of KLF2-NO signaling in LSECs, and up-regulates the expression of CXCL16 in LSECs. In intrahepatic inoculated fibrotic HCC mouse model, LSEC-targeted nano-delivery of simvastatin not only alleviates LSEC capillarization to regress the stromal microenvironment, but also recruits natural killer T (NKT) cells through CXCL16 to suppress tumor progression. Together with anti-programmed death-1-ligand-1 (anti-PD-L1) antibody, targeted-delivery of simvastatin achieves an improved therapeutic effect in hemi-splenic inoculated advanced-stage HCC model. Conclusions These findings reveal an immune-based therapeutic mechanism of simvastatin for remodeling immunosuppressive tumor microenvironment, therefore providing a novel strategy in treating HCC. Graphical Abstract


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5660
Author(s):  
Nadja Niclauss ◽  
Ines Gütgemann ◽  
Jonas Dohmen ◽  
Jörg C. Kalff ◽  
Philipp Lingohr

Overall survival of gastric cancer remains low, as patients are often diagnosed with advanced stage disease. In this review, we give an overview of current research on biomarkers in gastric cancer and their implementation in treatment strategies. The HER2-targeting trastuzumab is the first molecular targeted agent approved for gastric cancer treatment. Other promising biomarkers for targeted therapies that have shown relevance in clinical trials are VEGF and Claudin 18.2. Expression of MET has been shown to be a negative prognostic factor in gastric cancer. Targeting the PD-1/PD-L1 pathway with immune checkpoint inhibitors has proven efficacy in advanced gastric cancer. Recent technology advances allow the detection of circulating tumor cells that may be used as diagnostic and prognostic indicators and for therapy monitoring in gastric cancer patients. Prognostic molecular subtypes of gastric cancer have been identified using genomic data. In addition, transcriptome profiling has allowed a comprehensive characterization of the immune and stromal microenvironment in gastric cancer and development of novel risk scores. These prognostic and predictive markers highlight the rapidly evolving field of research in gastric cancer, promising improved treatment stratification and identification of molecular targets for individualized treatment in gastric cancer.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1891
Author(s):  
Stephen J. Winter ◽  
Hunter A. Miller ◽  
Jill M. Steinbach-Rankins

A novel multicellular model composed of epithelial ovarian cancer and fibroblast cells was developed as an in vitro platform to evaluate nanovector delivery and ultimately aid the development of targeted therapies. We hypothesized that the inclusion of peptide-based scaffold (PuraMatrix) in the spheroid matrix, to represent in vivo tumor microenvironment alterations along with metastatic site conditions, would enhance spheroid cell growth and migration and alter nanovector transport. The model was evaluated by comparing the growth and migration of ovarian cancer cells exposed to stromal cell activation and tissue hypoxia. Fibroblast activation was achieved via the TGF-β1 mediated pathway and tissue hypoxia via 3D spheroids incubated in hypoxia. Surface-modified nanovector transport was assessed via fluorescence and confocal microscopy. Consistent with previous in vivo observations in ascites and at distal metastases, spheroids exposed to activated stromal microenvironment were denser, more contractile and with more migratory cells than nonactivated counterparts. The hypoxic conditions resulted in negative radial spheroid growth over 5 d compared to a radial increase in normoxia. Nanovector penetration attenuated in PuraMatrix regardless of surface modification due to a denser environment. This platform may serve to evaluate nanovector transport based on ovarian ascites and metastatic environments, and longer term, it provide a means to evaluate nanotherapeutic efficacy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1131-1131
Author(s):  
Alena I. Dorofeeva ◽  
Irina N. Shipounova ◽  
Nina J. Drize ◽  
Anton V. Luchkin ◽  
Zalina T. Fidarova ◽  
...  

Abstract Aplastic anemia (AA) is believed to be an autoimmune disorder characterized by the pancytopenia due to the depletion of hematopoietic stem and progenitor cells in the bone marrow. There are three forms of AA depending on the severity of pancytopenia: moderate, or non-severe AA (NAA), severe AA (SAA), and very severe AA (VSAA). Clones of cells typical for paroxysmal nocturnal hemoglobinuria (PNH-clones) are frequently present in AA patients in various proportions. We aimed to study stromal microenvironment of untreated AA patients depending on the AA severity, presence or absence of PNH-clone, and on the response to the therapy after 3 and 6 months of treatment. We analyzed the bone marrow (BM) multipotent mesenchymal stromal cells (MMSCs) in their ability to maintain hematopoietic precursors and examined relative expression levels (REL) of selected genes. The study included 17 patients with NAA (53% females, 47% males, 33.8±2.2 years old), 12 patients with SAA (33% females, 67% males, 29.3±3.8 years old). Among NAA patients 7 had PNH-clone, and among SAA - 6 patients. Control group consisted of 19 donors (42% females, 58% males, 30.4±3.1 years old). The ability to support hematopoietic precursors by MMSCs from the BM of AA patients was measured by cobble stone area forming cells (CAFC) assay, where BM cells from one healthy donor were seeded on different MMSCs; REL of selected genes was analyzed with TaqMan RT-PCR. Only the genes with statistically significant differences are presented. The data are presented as mean ± standard error of measures, the differences were statistically significant when p<0.05 when Student's unpaired t-test or Mann-Whitney test was applied. MMSCs from AA patients preserve their ability to maintain hematopoietic precursors. CAFC 7 frequency reflects the number of late hematopoietic precursors. CAFC 7 frequency was slightly higher on MMSCs from NAA patients (9.92±2.73 per 10 6 healthy BM cells) then on MMSCs from healthy donors (5.56±1.14 per 10 6 healthy BM cells), although the difference was not statistically significant. MMSCs from SAA patients maintained CAFC 7 as well as donors' MMSCs (6.75±1.96 per 10 6 healthy BM cells). The frequency of CAFC 28, reflecting the number of early hematopoietic precursor, displayed similar but more pronounced dynamics. CAFC 28 frequency on NAA patients' MMSCs was significantly higher than on donors' ones (2.17±0.34 versus 1.11±0.31 per 10 6 healthy BM cells, p=0.03), while on SAA patients' MMSCs it was also high (1.92±0.57 per 10 6 healthy BM cells) but the difference was insignificant (Table 1). The presence of PNH-clone does not affect the ability of stromal cells to maintain hematopoiesis. MMSCs from the patients that had responded to the therapy in 90 or 180 days did not differ in their ability to maintain hematopoietic precursors from the MMSCs of treatment resistant the patients. Therefore, we can assume that physiological function of stromal microenvironment is not affected deeply in the debut of AA. Gene expression analysis revealed statistically significant upregulation of FGFR1, PDGFRA, VEGFA and downregulation of ANG1 (in MMSCs from both NAA and SAA patients), and upregulation of FGFR2 and CFH (only in NAA patients' MMSCs) (Table 2). In MMSCs of AA patients (both NAA and SAA) without PNH-clone the upregulation of CFH gene was detected (Table 3). CFH is one of the players in the complement system which is disrupted in PNH. This fact needs to be further scrutinized. In addition, IL1R, SDF1 and VEGFA were statistically significantly downregulated in MMSCs from AA patients with PNH-clone compared with MMSCs from patients without PNH-clone. It seems that the presence of PNH-clone corresponds with the changes in stromal microenvironment. Gene expression of analyzed genes was the same in MMSCs of the patients that had responded or not responded to the treatment in 90 or 180 days since the therapy begun. Thus, MMSCs from the BM of untreated AA patients preserve their ability to support hematopoietic precursors however display the pronounced changes in gene expression. The work is supported by the RFBR, project 19-015-00280. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander P. Landry ◽  
Nardin Samuel ◽  
Julian Spears ◽  
Zsolt Zador

AbstractMedulloblastoma is the most common malignant brain tumour of childhood. While our understanding of this disease has progressed substantially in recent years, the role of tumour microenvironment remains unclear. Given the increasing role of microenvironment-targeted therapeutics in other cancers, this study was aimed at further exploring its role in medulloblastoma. Multiple computational techniques were used to analyze open-source bulk and single cell RNA seq data from primary samples derived from all subgroups of medulloblastoma. Gene expression is used to infer stromal subpopulations, and network-based approaches are used to identify potential therapeutic targets. Bulk data was obtained from 763 medulloblastoma samples and single cell data from an additional 7241 cells from 23 tumours. Independent bulk (285 tumours) and single cell (32,868 cells from 29 tumours) validation cohorts were used to verify results. The SHH subgroup was found to be enriched in stromal activity, including the epithelial-to-mesenchymal transition, while group 3 is comparatively stroma-suppressed. Several receptor and ligand candidates underlying this difference are identified which we find to correlate with metastatic potential of SHH medulloblastoma. Additionally, a biologically active gradient is detected within SHH medulloblastoma, from “stroma-active” to “stroma-suppressed” cells which may have relevance to targeted therapy. This study serves to further elucidate the role of the stromal microenvironment in SHH-subgroup medulloblastoma and identify novel treatment possibilities for this challenging disease.


Author(s):  
Julie Maja Leth ◽  
Michael Ploug

The interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) focalizes plasminogen activation to cell surfaces, thereby regulating extravascular fibrinolysis, cell adhesion, and migration. uPAR belongs to the Ly6/uPAR (LU) gene superfamily and the high-affinity binding site for uPA is assembled by a dynamic association of its three consecutive LU domains. In most human solid cancers, uPAR is expressed at the invasive areas of the tumor-stromal microenvironment. High levels of uPAR in resected tumors or shed to the plasma of cancer patients are robustly associated with poor prognosis and increased risk of relapse and metastasis. Over the years, a plethora of different strategies to inhibit uPA and uPAR function have been designed and investigated in vitro and in vivo in mouse models, but so far none have been implemented in the clinics. In recent years, uPAR-targeting with the intent of cytotoxic eradication of uPAR-expressing cells have nonetheless gained increasing momentum. Another avenue that is currently being explored is non-invasive imaging with specific uPAR-targeted reporter-molecules containing positron emitting radionuclides or near-infrared (NIR) florescence probes with the overarching aim of being able to: (i) localize disease dissemination using positron emission tomography (PET) and (ii) assist fluorescence guided surgery using optical imaging. In this review, we will discuss these advancements with special emphasis on applications using a small 9-mer peptide antagonist that targets uPAR with high affinity.


2021 ◽  
Author(s):  
Lee Shaashua ◽  
Meirav Pevsner-Fischer ◽  
Gil Friedman ◽  
Oshrat Levi-Galibov ◽  
Subhiksha Nandakumar ◽  
...  

AbstractCancer-associated fibroblasts (CAFs) give rise to desmoplastic stroma, which supports tumor progression and metastasis, and comprises up to 90% of the tumor mass in pancreatic cancer. Recent work by us and others has shown that CAFs are transcriptionally rewired by adjacent cancer cells to form heterogeneous subtypes. Whether this rewiring is differentially affected by different driver mutations in cancer cells is largely unknown. Here we address this question by dissecting and comparing the stromal landscape of BRCA-mutated and BRCA Wild-type (WT) pancreatic ductal adenocarcinoma (PDAC). We comprehensively analyze PDAC samples from a cohort of 42 patients by laser-capture microdissection, RNA-sequencing and multiplexed immunofluorescence, revealing different CAF subtype compositions in germline BRCA-mutated vs. BRCA-WT tumors. In particular, we detect an increase in a subset of Clusterin (CLU)-positive CAFs in BRCA-mutated tumors. We further unravel a network of stress responses upregulated in BRCA-mutated tumors. Using cancer organoids and cell co-cultures, we show that the transcriptional shift of pancreatic stellate cells into CLU+ CAFs is mediated through activation of heat-shock factor 1 (HSF1), the transcriptional regulator of Clu. Our findings unravel a new dimension of stromal heterogeneity, influenced by germline mutations in cancer cells, with direct translational implications for clinical research.SignificanceBRCA1/2 mutations initiate some of the deadliest cancers, yet the fibroblastic microenvironment of BRCA-mutated cancers remains uncharted. Our work addresses a major unsolved question – to what extent is the tumor microenvironment determined by cancer mutations? We find that BRCA mutations in the cancer cells affect the composition of CAFs in PDAC. These findings have direct implications for diagnosis and for efforts to exploit CAFs for therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiuyang Liu ◽  
Xiafei Geng ◽  
Jinxuan Hou ◽  
Gaosong Wu

AbstractInfiltration of macrophages in and around tumor nest represents one of the most crucial hallmarks during tumor progression. The mutual interactions with tumor cells and stromal microenvironment contribute to phenotypically polarization of tumor associated macrophages. Macrophages consist of at least two subgroups, M1 and M2. M1 phenotype macrophages are tumor-resistant due to intrinsic phagocytosis and enhanced antitumor inflammatory reactions. Contrastingly, M2 are endowed with a repertoire of tumor-promoting capabilities involving immuno-suppression, angiogenesis and neovascularization, as well as stromal activation and remodeling. The functional signature of M2 incorporates location-related, mutually connected, and cascade-like reactions, thereby accelerating paces of tumor aggressiveness and metastasis. In this review, mechanisms underlying the distinct functional characterization of M1 and M2 macrophages are demonstrated to make sense of M1 and M2 as key regulators during cancer progression.


2021 ◽  
pp. 1-8
Author(s):  
Salah Aref ◽  
Lamiaa Ebrahim ◽  
Shaimaa El-Ashwah ◽  
Mohamed El Agdar ◽  
Mohamed Ayed

BACKGROUND: Acute myeloid leukemia changes the bone marrow (BM) niche to support leukemia cells by modulating the stromal microenvironment. The aim is to assess Activin-A as a biomarker in acute myeloid leukemia (AML). METHODS: The level of Activin-A and CXCL-12 protein concentration levels in the plasma of bone marrow aspirate samples of eighty AML patients at diagnosis, after induction and at relapse were determined by ELISA. RESULTS: We found that Activin-A concentration levels was significantly up regulated in AML cases at diagnosis, and down regulated at complete remission and rise again at relapse (P< 0.001). In contrast; the CXCL-12 gene expression was significantly down regulated in AML cases at diagnosis; relapse, and up regulated after complete remission (P< 0.001). Multivariate analysis showed that high Activin-A levels at diagnosis is significant predictor of induction of remission response OR 1.006 (CI: 1.002–1.010) (P= 0.003); AML relapse OR 1.002 (CI: 1.0–1.004) (P= 0.043) as well as patients’ outcome OR 1.33 (CI: 1.004–1.062) (P= 0.024). CONCLUSION: Activin-A level at diagnosis is a new simple easily assessed biomarker that could predict AML patient’s response to therapy as well as patient’s outcome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daiki Hashimoto ◽  
Jose Gabriel R. Colet ◽  
Aki Murashima ◽  
Kota Fujimoto ◽  
Yuko Ueda ◽  
...  

AbstractThe thymus facilitates mature T cell production by providing a suitable stromal microenvironment. This microenvironment is impaired by radiation and aging which lead to immune system disturbances known as thymic involution. Young adult thymus shows thymic recovery after such involution. Although various genes have been reported for thymocytes and thymic epithelial cells in such processes, the roles of stromal transcription factors in these remain incompletely understood. MafB (v-maf musculoaponeurotic fibrosarcoma oncogene homolog B) is a transcription factor expressed in thymic stroma and its expression was induced a day after radiation exposure. Hence, the roles of mesenchymal MafB in the process of thymic regeneration offers an intriguing research topic also for radiation biology. The current study investigated whether MafB plays roles in the adult thymus. MafB/green fluorescent protein knock-in mutant (MafB+/GFP) mice showed impaired thymic regeneration after the sublethal irradiation, judged by reduced thymus size, total thymocyte number and medullary complexity. Furthermore, IL4 was induced after irradiation and such induction was reduced in mutant mice. The mutants also displayed signs of accelerated age-related thymic involution. Altogether, these results suggest possible functions of MafB in the processes of thymic recovery after irradiation, and maintenance during aging.


Sign in / Sign up

Export Citation Format

Share Document