headspace concentration
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 1)

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Imogen Ramsey ◽  
Vlad Dinu ◽  
Rob Linforth ◽  
Gleb E. Yakubov ◽  
Stephen E. Harding ◽  
...  

AbstractConsumer sensory evaluation, aroma release analysis and biophysical protein analysis were used to investigate the effect of ethanol on the release and perception of flavour in beer (lager and stout) at different ethanol levels (0 and 5% ABV). Consumer study results showed no significant differences in orthonasal perception, yet retronasal results showed that 0% lager was perceived as maltier with reduced fruitiness, sweetness, fullness/body and alcohol warming sensation (p < 0.05). Whilst ethanol alone decreases the aroma release regardless of LogP, the presence of α-amylase selectively reduces the headspace concentration of hydrophobic compounds. It was found that ethanol has a subtle inhibitory effect on the binding of hydrophobic compounds to α-amylase, thereby increasing their headspace concentration in the 5% ABV as compared to the 0% beers. This synergistic ethanol * saliva effect is attributed to the changes in the conformation of α-amylase due to ethanol-induced denaturation. It is hypothesised that the partially unfolded protein structures have a lower number of hydrophobic pockets, leading to a lower capacity to entrap hydrophobic aroma compounds. This supports the hypothesis that ethanol * saliva interactions directly impact the sensory and flavour properties of beer, which would provide a basis for further investigations in reformulation of 0% ABV drinks.


2020 ◽  
Vol 88 ◽  
pp. 103406
Author(s):  
Juliana Lane Paixão dos Santos ◽  
Simbarashe Samapundo ◽  
Stefani Djunaidi ◽  
An Vermeulen ◽  
Anderson S. Sant’Ana ◽  
...  

2020 ◽  
Vol 81 (10) ◽  
pp. 2043-2056 ◽  
Author(s):  
Rita Ventura Matos ◽  
Filipa Ferreira ◽  
José Saldanha Matos

Abstract This study was carried out to evaluate the effect of natural ventilation and intermittent pumping events in hydrogen sulfide and methane dynamics, in terms of system operation and risk of gas exposure. Work was conducted in a full scale gravity sewer downstream of pumping stations, in Portugal. Different ventilation rates and locations were assessed, as well as H2S removal rates and potential exposure risk, through the opening of distinct manhole covers. Increased ventilation, resulting from opening of one manhole cover, saw a 38% increase in average pipe air velocity peaks, doubling the estimated rate of air turnovers per day, accompanied by an increase of nearly 20% in H2S average removal rate. Simultaneous opening of two manhole covers induced similar airflow rates through the vent stack, but different rates throughout the pipe. H2S removal rates were also found to differ, according to location of open manholes, but also initial H2S headspace concentration. Under more unfavourable conditions, natural ventilation did not suffice in attaining recommended safety concentrations, regardless of number and location of open manhole covers. H2S concentrations above defined thresholds were verified for all studied setups. Headspace oxygen concentrations below an 18.5% asphyxiation threshold also occasionally occurred, even at manholes immediately downstream of ventilation point.


2020 ◽  
Vol 103 (5) ◽  
pp. 1201-1207
Author(s):  
Yanqi Qu ◽  
Minqi Wang ◽  
Shijun Huang ◽  
Eric A Decker ◽  
D Julian McClements ◽  
...  

Abstract Background Surface-enhanced Raman scattering (SERS) has been deployed in the analysis of food at solid and aqueous states. However, its capability has not been fully explored in headspace profiling. Objective To develop an innovative SERS method for analyzing headspace volatile compounds in foods. Methods A volatile-capture device was developed by depositing a film of silver nanoparticles in a vial cap to capture the volatiles released from a model flavor compound (garlic). Results SERS peaks at 1632, 1400, 1291, 1191, 731, and 577 cm−1 were identified in the headspace of the garlic sample, which was representative of an organosulfur compound (diallyl disulfide), and its concentration was determined at 135 ppm, which was comparable to the value determined using GC. Preparation and analysis could be carried out in &lt;10 min for the SERS method. The sensitivity of the SERS method (10 ppm), however, was slightly less than that of the GC method (5 pm). Conclusions The SERS method was able to quantify the concentration of diallyl disulfide in the headspace of a raw garlic ethanolic extract. Compared to GC, the SERS method had a much shorter analysis time and simpler sample preparation procedure than GC when analyzing large numbers of samples. Highlights The innovative “mirror-in-a-cap” substrate was simpler and faster than other reported SERS substrates used for this purpose. Additionally, SERS has much better portability and the potential for real-time monitoring of changes in the garlic headspace concentration during manufacturing and processing.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1969 ◽  
Author(s):  
Alessandro Genovese ◽  
Ferdinando Mondola ◽  
Antonello Paduano ◽  
Raffaele Sacchi

In this study, the influence of phenolic compounds on the sensory scores attributed to extra virgin olive oil (EVOO) by panel test was investigated. Two model olive oils (MOOs) with identical concentrations of volatile compounds, differing only in the amount of biophenols (297 vs. 511 mg kg−1), were analysed by two official panels and by SPME-GC/MS. Six other MOOs set up by the two previous models were also tested and analysed. They were formulated separately with the addition of three off-flavours (‘rancid’, ‘winey–vinegary’ and ‘fusty–muddy’). While high levels of EVOO phenolic compounds did not produce any effect on the headspace concentration of volatile compounds, they did affect the scores of both positive and negative sensory attributes of EVOO, due to the well-known in-mouth interactions between EVOO phenols, saliva and volatile compounds. In particular, a decrease of about 39% in the positive fruity score was found in the presence of a higher concentration of phenols. Regarding EVOO off-flavours, the higher level of phenolic compounds decreased by about 23% the score of ‘fusty–muddy’ defect and increased the score of ‘winey–vinegary’ defect about 733%. No important effect of EVOO phenolics on the perceived intensity of the ‘rancid’ defect was found. These findings could be helpful in explaining some discrepancies of panel test responses observed during extra virgin olive oil shelf life.


Sign in / Sign up

Export Citation Format

Share Document