longitudinal body axis
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 0)

BMJ Open ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. e052086
Author(s):  
Aurélien Hugues ◽  
Amandine Guinet-Lacoste ◽  
Sylvie Bin ◽  
Laurent Villeneuve ◽  
Marine Lunven ◽  
...  

IntroductionPatients with right stroke lesion have postural and balance disorders, including weight-bearing asymmetry, more pronounced than patients with left stroke lesion. Spatial cognition disorders post-stroke, such as misperceptions of subjective straight-ahead and subjective longitudinal body axis, are suspected to be involved in these postural and balance disorders. Prismatic adaptation has showed beneficial effects to reduce visuomotor disorders but also an expansion of effects on cognitive functions, including spatial cognition. Preliminary studies with a low level of evidence have suggested positive effects of prismatic adaptation on weight-bearing asymmetry and balance after stroke. The objective is to investigate the effects of this intervention on balance but also on postural disorders, subjective straight-ahead, longitudinal body axis and autonomy in patients with chronic right stroke lesion.Methods and analysisIn this multicentre randomised double-blind sham-controlled trial, we will include 28 patients aged from 18 to 80 years, with a first right supratentorial stroke lesion at chronic stage (≥12 months) and having a bearing ≥60% of body weight on the right lower limb. Participants will be randomly assigned to the experimental group (performing pointing tasks while wearing glasses shifting optical axis of 10 degrees towards the right side) or to the control group (performing the same procedure while wearing neutral glasses without optical deviation). All participants will receive a 20 min daily session for 2 weeks in addition to conventional rehabilitation. The primary outcome will be the balance measured using the Berg Balance Scale. Secondary outcomes will include weight-bearing asymmetry and parameters of body sway during static posturographic assessments, as well as lateropulsion (measured using the Scale for Contraversive Pushing), subjective straight-ahead, longitudinal body axis and autonomy (measured using the Barthel Index).Ethics and disseminationThe study has been approved by the ethical review board in France. Findings will be submitted to peer-reviewed journals relative to rehabilitation or stroke.Trial registration numberNCT03154138.


2021 ◽  
pp. 1-8
Author(s):  
Arjan J. H. Meskers ◽  
Mark M. J. Houben ◽  
Helena J. M. Pennings ◽  
Gilles Clément ◽  
Eric Groen

BACKGROUND: During large angles of self-tilt in the roll plane on Earth, measurements of the subjective visual vertical (SVV) in the dark show a bias towards the longitudinal body axis, reflecting a systematic underestimation of self-tilt. OBJECTIVE: This study tested the hypothesis that self-tilt is underestimated in partial gravity conditions, and more so at lower gravity levels. METHODS: The SVV was measured in parabolic flight at three partial gravity levels: 0.25, 0.50, and 0.75 g. Self-tilt was varied amongst 0, 15, 30, and 45 deg, using a tiltable seat. The participants indicated their SVV by setting a linear array of dots projected inside a head mounted display to the perceived vertical. The angles of participants’ body and head roll tilt relative to the gravito-inertial vertical were measured by two separate inertial measurement units. RESULTS: Data on six participants were collected. Per G-level, a regression analysis was performed with SVV setting as dependent variable and head tilt as independent variable. The latter was used instead of chair tilt, because not all the participants’ heads were aligned with their bodies. The estimated regression slopes significantly decreased with smaller G-levels, reflecting an increased bias of the SVV towards the longitudinal body axis. On average, the regression slopes were 0.95 (±0.38) at 0.75 g; 0.84 (±0.22) at 0.5 g; and 0.63 (±0.33) at 0.25 g. CONCLUSIONS: The results of this study show that reduced gravity conditions lead to increased underestimation of roll self-tilt.


Herpetozoa ◽  
2021 ◽  
Vol 34 ◽  
pp. 49-55
Author(s):  
Henrik Bringsøe ◽  
Maneerat Suthanthangjai ◽  
Winai Suthanthangjai ◽  
Jo Lodder ◽  
Navapol Komanasin

Predation on adult microhylid frogs Kaloula pulchra by two closely-related colubrid snakes is described, based on two observations of Oligodon formosanus in Hong Kong and one observation of O. fasciolatus in Thailand. In two instances, O. formosanus was observed cutting open the abdomen of this anuran species. In one case, it performed repeated rotations about its own longitudinal body axis (“death roll”) while its head was inserted into the frog’s abdomen. The purpose of this behaviour was probably to tear off organs and swallow them. Once O. fasciolatus was observed catching and swallowing K. pulchra whole. In that case, the snake also made a series of rotations while it maintained its firm grip in the frog’s belly. It is concluded that, for these two closely-related kukri snakes, prey size is crucial for determining whether the gape width allows large preys to be swallowed entire.


2011 ◽  
Vol 209 (3) ◽  
pp. 443-454
Author(s):  
M. Tatalias ◽  
C. J. Bockisch ◽  
G. Bertolini ◽  
D. Straumann ◽  
A. Palla

2007 ◽  
Vol 413 (2) ◽  
pp. 150-153 ◽  
Author(s):  
Gilles Clément ◽  
Tonje N. Arnesen ◽  
Morten H. Olsen ◽  
Bruno Sylvestre

2007 ◽  
Vol 78 (1) ◽  
pp. 43-48 ◽  
Author(s):  
J Barra ◽  
V Chauvineau ◽  
T Ohlmann ◽  
M Gresty ◽  
D Perennou

2006 ◽  
Vol 23 (2) ◽  
pp. 209-219 ◽  
Author(s):  
SHAWN P. GALLAGHER ◽  
DAVID P.M. NORTHMORE

Visually evoked extracellular neural activity was recorded from the nucleus isthmi (NI) of goldfish and bluegill sunfish. When moving anywhere within the right eye's visual field, three-dimensional checkered balls or patterns on a computer screen evoked bursts of spikes in the left NI. Object motion parallel to the longitudinal body axis gave responses that habituated markedly upon repetition, but movement into recently unstimulated regions of the visual field gave vigorous responses. Thus, while NI's response is not visuotopic, its habituation is. An object approaching the animal's body generated a rising spike density, whereas object recession generated only a transient burst. During the approach of a checkered stimulus ball, average NI spike density rose linearly as the ball-to-eye distance decreased and at a rate proportional to the ball's speed (2.5–30 cm/s). Increasing ball size (2.2–9.2 cm) did not affect the rate of activity rise at a given speed, but did increase overall activity levels. NI also responded reliably to expanding textures of fixed overall size. The results suggest that NI signals changes in motion of objects relative to the fish, and estimates the proximity of approaching objects.


2002 ◽  
Vol 205 (16) ◽  
pp. 2499-2509 ◽  
Author(s):  
Paul Graham ◽  
Thomas S. Collett

SUMMARYBees, wasps and ants learn landmarks as views from particular vantage points, storing the retinal positions of landmark edges. By moving so as to minimise the difference between their stored and current view, they can return to the vantage point from which a view was taken. We have examined what wood ants learn about a laterally placed, extended landmark, a wall, while walking parallel to it to reach a feeder and how they use this stored information to guide their path. Manipulation of the height of the wall and the ant's starting distance from it reveals that ants maintain a desired distance from the wall by keeping the image of the top of the wall at a particular retinal elevation. Ants can thus employ image matching both for returning to a place and for following a fixed route.Unlike many flying insects, an ant's direction of motion while walking is always along its longitudinal body axis and, perhaps for this reason, it favours its frontal retina for viewing discrete landmarks. We find that ants also use their frontal retina for viewing a laterally placed wall. On a coarse scale, the ant's path along the wall is straight, but on a finer scale it is roughly sinusoidal, allowing the ant to scan the surrounding landscape with its frontal retina. The ant's side-to-side scanning means that the wall is viewed with its frontal retina for phases of the scanning cycle throughout its trajectory. Details of the scanning pattern depend on the scene. Ants scan further to the side that is empty of the wall than to the side containing the wall, and they scan further into the wall side when the wall is of a lower apparent height. We conclude that frontal retina is employed for image storage and for path control.


Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 177-189 ◽  
Author(s):  
L. Gleizer ◽  
G.S. Stent

Segmentation in the leech embryo is established by a stereotyped cell lineage. Each of the 32 segments arises from homologous, bilaterally symmetrical complements of mesodermal and ectodermal blast cell clones. Although segments are homologous, they are regionally differentiated along the longitudinal body axis. Various segments display idiosyncratic ensembles of features, which constitute discrete segmental identities. The differentiation of segment-specific features, such as the mesoderm-derived nephridia, genital primordia and identified Small Cardioactive Peptide immunoreactive neurons, reflects a diversification of the developmental fates of homologous blast cell clones. We have investigated whether segment-specific differentiation of homologous mesodermal blast cell clones depends on cell-intrinsic mechanisms (based on the cells' lineage history) or on cell-extrinsic mechanisms (based on the cells' interactions with their environment) in embryos of Theromyzon rude. For this purpose, we first mapped the segment-specific fates of individual mesodermal blast cell clones, and then induced mesodermal clones to take part in the formation of segments for which they are not normally destined. Two types of ectopic segmental position were produced: one in which a mesodermal blast cell clone was out of register with all other consegmental cells and one in which a mesodermal blast cell clone was out of register with its overlying ectoderm, but was in normal register with the mesoderm and ectoderm on the other side of the embryo. Mesodermal blast cell clones that developed in either type of ectopic segmental position gave rise to segment-specific features characteristic of their original segmental fates rather than their ectopic positions. Thus, the development of segmental identity in the leech mesoderm is attributable to a cell-intrinsic mechanism and, either before or soon after their birth, mesodermal blast cells are autonomously committed to segment-specific fates.


Sign in / Sign up

Export Citation Format

Share Document