chitosan membrane
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 73)

H-INDEX

38
(FIVE YEARS 6)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 35
Author(s):  
Sheila Barbosa Paranhos ◽  
Elisângela da Silva Ferreira ◽  
Caio Augusto de Almeida Canelas ◽  
Simone Patrícia Aranha da Paz ◽  
Marcele Fonseca Passos ◽  
...  

The interaction of copaiba oil in the polymer matrix of chitosan can produce a favorable synergistic effect and potentiate properties. Indeed, the bioactive principles present in copaiba oil have anti-inflammatory and healing action. In the present work, chitosan membranes containing different contents of copaiba oil copaíba (0.1, 0.5, 1.0 and 5.0% (v/v)) were for the first time investigated. The membranes were developed by the casting method and analyzed for their morphology, degree of intumescence, moisture content, contact angle, Scanning Electron Microscope, and X-ray diffractometry. These chitosan/copaiba oil porous membranes disclosed fluid absorption capacity, hydrophilic surface, and moisture. In addition, the results showed that chitosan membranes with the addition of 1.0% (v/v) of copaiba oil presented oil drops with larger diameters, around 123.78 μm. The highest fluid absorption indexes were observed in chitosan membranes containing 0.1 and 0.5% (v/v) of copaiba oil. In addition, the copaiba oil modified the crystalline structure of chitosan. Such characteristics are expected to favor wound treatment. However, biological studies are necessary for the safe use of chitosan/copaiba oil membrane as a biomaterial.


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Dhony Hermanto ◽  
◽  
Mudasir Mudasir ◽  
Dwi Siswanta ◽  
Bambang Kuswandi ◽  
...  

An optical fiber biosensor has been developed for the detection of mercury ion based on inhibition of urease immobilized onto alginate–chitosan membrane, coupled with bromothymol blue (BTB) in the flow system. To get a good performance of the biosensor toward Hg(II) ion detection, the experimental parameters of the biosensor were optimized. Here, the maximum wavelength was detected at 580 nm, with the optimum response at pH of 6. The calibration curve had a dynamic working range at 10 to 500 μg/L of Hg(II) ion with a detection limit of 12.1 μg/L biosensor has been performed by the addition of 1 mM ethylenediaminetetraacetic acid (EDTA) solution, in which five-time cycles have been achieved with the inhibition decrease to 9.94% from the original biosensor response. Applying the biosensor to the real samples showed conformity of results with the reference method, cold vapor atomic absorption spectrometry (CV-AAS). Therefore, this biosensor can be used as a method for routine analysis in the determination of Hg(II) concentration in an aqueous sample.


2021 ◽  
Vol 926 (1) ◽  
pp. 012016
Author(s):  
H Aldila ◽  
M K Swandi ◽  
D Y Dalimunthe

Abstract Synthesis and antibacterial activity of chitosan membrane was investigated. Chitosan membrane have been successfully by simple method from chitosan extracted from shrimp shell waste. Extraction of chitosan was carried out in four steps: demineralization, deproteinization, decolorization and deacetylation of chitin. The effect of deacetylation temperature on deacetylation process was studied. The results shown that the increase of deacetylation temperature from 30°C to 90°C causes the increase of chitosan deacetylation degree (DD). The increase of deacetylation temperature cause the increment of OH- attack to the amino group thus realizing the effective deacetylation of chitin. The highest chitosan DD was up to 77.99% is achieved under the deacetylation temperature from 90°C and the occurrence of deacetylation structurally demonstrated by the Fourier transform infrared (FTIR) and the XRD characterization. The antimicrobial test results used S. epidermidis and P. acne of chitosan membrane at various deacetylation temperature conditions indicated that no bacterial activity for all variants.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Christine Dyta Nugraeni ◽  
Lukman Atmaja ◽  
Nur Hayati ◽  
Mochammad Purwanto ◽  
Mardi Santoso ◽  
...  

Modified chitosan membrane is one of the promising membranes for polymer electrolyte membrane. Chitosan/N-phthaloyl chitosan composite membranes were fabricated to obtain high proton conductivity and low methanol permeability. Membranes were fabricated by casting method and solvent evaporation. Surface morphology, mechanical analysis, methanol permeability, and proton conductivity were used to characterize the overall properties. FT-IR spectra exhibited the presence of interaction of chitosan and n-phthaloyl/chitosan. SEM analysis showed that the surface roughness of composite membrane increases as the n-phthaloyl loading increases. The highest proton conductivity of synthesized membrane is at 2.4 mS.cm-1 and is higher than pristine chitosan membrane at 1.6 mS.cm-1. Moreover, with n-phthaloyl/chitosan addition, the methanol permeability was also improved. The correlation between proton conductivity and methanol permeability in composite membranes suggests that the blend has its potential in DMFC application.


2021 ◽  
Vol 1 (1) ◽  
pp. 10-25
Author(s):  
Nurillahi Febria Leswana ◽  
Dwi Siswanta ◽  
Adhitasari Suratman

ABSTRAK Telah dilakukan sintesis membran polistirena sulfonat (PSS)-kitosan dari modifikasi limbah styrofoam, kemudian dipelajari kemampuannya dalam mengadsorpsi logam Ni(II) dan Cu(II). Telah ditentukan pula komposisi optimum PSS-kitosan, uji stabilitas asam basa, dan kemampuan swellingnya. Parameter kajian adsorpsi yang dipelajari dalam penelitian ini meliputi pH optimum, kinetika adsorpsi, isoterm adsorpsi, pengaruh kation lain secara selektifitas, dan penentuan mekanisme adsorpsi. Analisis logam Cu(II) dan Ni(II) sebelum dan sesudah proses adsorpsi dilakukan dengan menggunakan metode Spektrofotometri Serapan Atom (SSA) Hasil penelitian menunjukkan  bahwa polistirena sulfonat (PSS) berhasil diperoleh dari reaksi sulfonasi limbah styrofoam yang ditunjukan dengan spektra FTIR. Komposisi optimum membran PSS:kitosan untuk mengadsorpsi logam Cu(II) dan Ni(II) adalah  perbandingan 60:40 dengan kestabilan, sifat fisik, dan kemampuan adsorpsi yang paling baik. Keadaan pH optimum adsorpsi logam Cu(II) dan Ni(II) berada pada pH 5, waktu optimum berturut-turut 45 menit dan 60 menit, serta konsentrasi optimum berturut-turut 60 ppm dan 40 ppm. Model kinetika dan isoterm adsorpsi logam Cu(II) dan Ni(II) pada membran PSS-kitosan adalah orde kedua semu (McKay dan Ho) dan model isoterm Freundlich. Tetapan laju reaksi logam Cu(II) dan Ni(II) pada pH 5 berturut-turut 0,480 mmol/g-1menit-1 dan 0,423 mmol/g-1menit-1. Adanya logam Ni(II) dalam adsorpsi Cu(II) tidak memberikan pengaruh yang signifikan sampai pada perbandingan Ni(II)/Cu(II)= 2:1, namun sebaliknya dengan kehadiran logam Cu(II) pada adsorpsi logam Ni(II) sudah memberikan pengaruh pada perbandingan Ni(II)/Cu(II)=1:1. Afinitas membran PSS-kitosan terhadap logam adalah Cu(II) > Ni(II). Pada studi desorpsi diketahui jenis interaksi antara adsorbat dan situs aktif adsorben merupakan mekanisme pembentukan kompleks, pemerangkapan dan pembentukan ikatan hidrogen.   ABSTRACT Synthesis of polystyrene sulphonate (PSS) – chitosan membrane of styrofoam waste modification and its ability to adsorb Ni (II) and Cu (II) metals has been studied. The optimum composition of PSS-chitosan, acidity stability test, and swelling ability have been determined. The parameters of the adsorption study studied in this study include optimum pH, adsorption kinetics, adsorption isotherms, selective cationic effects, and determination of adsorption mechanisms. Analysis of Cu (II) and Ni (II) metals before and after the adsorption process was performed using Atomic Absorption Spectrophotometric (AAS) The results showed that polystyrene sulphonate (PSS) was obtained from the sulfonation of styrofoam waste using the FTIR spectra. The optimum composition of rasio PSS: chitosan membrane for adsorbing Cu (II) and Ni (II) is 60:40 with the best stability, physical properties, and adsorption capability. The optimum pH adsorption of Cu (II) and Ni (II) metals was at pH 5, the optimum time was 45 min and 60 min, and the optimum concentrations were 60 ppm and 40 ppm. The kinetic and adsorption models of Cu (II) and Ni (II) metals on PSS-chitosan membranes are second-order (McKay and Ho) and Freundlich isotherm model. The reaction rates of Cu (II) and Ni (II) reactions at pH 5 were 0.480 mmol / g-1menit-1 and 0.423 mmol / g-1menit-1. The presence of Ni (II) metal in Cu (II) adsorption did not give a significant effect to the ratio of Ni (II) / Cu (II) = 2: 1, but with the presence of Cu (II) metal on metal adsorption Ni (II) have an effect on the ratio of Ni (II) / Cu (II) = 1: 1. The affinity of PSS-chitosan membrane to metal is Cu (II)> Ni (II). Sequential desorption studies showed that the adsorption of Cu (II) and Ni (II) metals on the PSS-chitosan membrane were estimated to follow a complex formation, hydrogen bond formation, and physical entrapment mechanisms.  


2021 ◽  
Vol 10 (2) ◽  
pp. 330
Author(s):  
Nur Rafiqa Puspita Sari ◽  
Iva Rustanti Eri ◽  
Demes Nurmayanti ◽  
Ferry Kriswandana ◽  
Narwati Narwati

Clam shells are a food solid waste that increases and accumulates every day, causing environmental pollution. Clam shells (Anadora granosa) contain chitin. Chitin can be processed into chitosan, which effective in absorbing heavy metals. To increase absorption, chitosan modified into a membrane. The purpose of this study was to analyze the membrane's ability of chitosan waste from blood clam shells to reduce levels of iron in water. The design of this study was pure experimentation. The object of research used was iron-containing artificial water made from iron salt powder at a dose of 4.50 mg/L. Variations of Chitosan concentration to the membranes manufacture were 1%, 2%, 3%. Analysis of the data used was One Way Anova Test. Chitosan characterization analysis using XR Diffraction showed that chitosan was isolated from shells at peak angles at 17.99o and 34.04o. The highest percentage of iron reduction was given by membranes with a chitosan concentration of 3%, which have decreased of 94%. The results showed that the membrane of blood shells chitosan can reduce iron levels in water and can be an alternative material in the utilization of clamshell waste. The membrane can be applied in simple water treatment filtration systems in the community.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Gladys K Bungan ◽  
Henry F Aritonang ◽  
Audy D Wuntu

Penelitian tentang pembuatan nanokomposit kitosan/TiO2/Ag telah dilakukan dengan menggunakan TiO2sebanyak6 gram dan konsentrasi AgNO3 yaitu 5 mM menggunakan metode reduksi dan impregnasi. Nanokomposit yang dihasilkan dikarakterisasi menggunakan X-Ray diffractometry (XRD), Scanning Electron Microscope-Energy Dispersive x-Ray Spectroscopy (SEM-EDS) dan menganalisis aktivitasnya sebagai anti bakteri terhadap Staphylococcus aureus (Gram positif) dan Escherichia coli (gram negatif). Hasil penelitian menunjukkan bahwa ukuran nanokomposit yang dihasilkan sebesar 56,93 nm. Difraktogram XRD muncul puncak karakteristik partikel TiO2 tetapi partikel Ag kurang terlihat jelas. Namun, berdasarkan data EDS, kedua partikel ini ditemukan pada membran kitosan. Ini menunjukkan bahwa sangat sedikit partikel Ag yang terbentuk atau keterbatasan alat XRD dalam mendeteksi sejumlah kecil partikel. Namun demikian, nanokomposit menunjukkan kemampuannya untuk menghambat pertumbuhan kedua bakteri ini.ABSTRACTResearch on the manufacture of chitosan/TiO2/Ag nanocomposites has been carried out using 6 grams of TiO2 and 5 mM AgNO3 using reduction and impregnation methods.The resulting nanocomposites were characterized using X-Ray diffraction (XRD), Scanning Electron Microscope-Energy Dispersive x-Ray Spectroscopy (SEM-EDS) and analyzed their activity as anti-bacteria against Staphylococcus aureus (Gram positive) and Escherichia coli (gram negative).The results showed that the resulting nanocomposite size was 56.93 nm. The XRD diffractogram showed the peak characteristics of TiO2 particles but the Ag particles were less visible.However, based on EDS data, the two particles were found on the chitosan membrane. This indicates that very few Ag particles are formed or the limitations of XRD devices in detecting a small number of Ag particles.However, the nanocomposites demonstrated their ability to inhibit the growth of these two bacteria.


2021 ◽  
Vol 12 ◽  
pp. 2247-2256
Author(s):  
Luiz G.A. de Carvalho ◽  
Luiz G.L. Guimarães ◽  
Ellen Raphael ◽  
Marco A. Schiavon ◽  
Bruno H.S. Torquato da Silva ◽  
...  

ALCHEMY ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 26-31
Author(s):  
Doni Notriawan ◽  
Nesbah Nesbah ◽  
Gustria Ernis ◽  
Muhammad Adeng Fadhila ◽  
Risky Hadi Wibowo ◽  
...  

The aim of this study was to make and test the antibacterial activity of chitosan/silver nanoparticles nanocomposite membranes. Nanocomposite membranes were synthesized by chitosan with pluronic using acetic acid as a solvent. Silver nanoparticles were synthesized using the green synthesis method and the makasar fruit (Brucea javanica L. Merr) peel extract as a bioreductor. The silver nanoparticles were composited with a chitosan/pluronic mixture and printed on a glass plate. Nanocomposite membranes were characterized using the FTIR spectrophotometer and the scanning electron microscope (SEM). Nanocomposite membrane were tested for antibacterial activity against Escherechia coli. The UV-Vis spectra showed the formation of silver nanoparticles which were indicated by the absorption at 454 nm and the absorbance value of 0.405. Characterization using FTIR showed no new functional groups formed in the composites of chitosan and pluronic. SEM results showed the difference between the chitosan membrane and the nanocomposite membrane. The surface of nanocomposite membrane showed uneven compared to the chitosan membrane. Nanocomposite membranes have antibacterial activity to inhibit E. coli growth.   Keywords: nanocomposite, chitosan/silver nanoparticles, antibacterial Penelitian ini bertujuan untuk membuat dan menguji aktivitas antibakteri membran nanokomposit kitosan/nanopartikel perak. Membran nanokomposit dibuat dengan mensintesis kitosan dengan pluronik menggunakan pelarut asam asetat. Nanopartikel perak disintesis menggunakan metode green synthesis dengan ekstrak kulit buah makasar (Brucea javanica L. Merr) sebagai bioreduktor. Nanopartikel perak dikompositkan dengan campuran kitosan/pluronik dan dicetak di atas plat kaca. Membran nanokomposit dikarakterisasi menggunakan spektrofotometer FTIR dan scanning electron microscope (SEM). Membran nanokomposit dilakukan uji aktivitas antibakteri terhadap Escherechia coli. Spektra UV-Vis menunjukkan terbentuknya nanopartikel perak yang ditandai adanya serapan pada panjang gelombang 454 nm dan absorbansi 0,405. Karakterisasi dengan FTIR menunjukkan tidak adanya gugus fungsi baru yang terbentuk pada komposit dari kitosan dan pluronik. Hasil SEM menunjukkan adanya perbedaan antara membran kitosan dengan membran nanokomposit. Permukaan membran nanokomposit terlihat tidak rata dibandingkan membran kitosan. Membran nanokomposit memiliki aktivitas bakteri sehingga dapat mengambat pertumbuhan bakteri E. coli. Kata kunci: nanokomposit, kitosan/nanopartikel perak, antibakteri


Sign in / Sign up

Export Citation Format

Share Document