epigenetic state
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 44)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Stamatis Papathanasiou ◽  
Nikos A. Mynhier ◽  
Shiwei Liu ◽  
Etai Jacob ◽  
Ema Stokasimov ◽  
...  

Transcriptional heterogeneity from plasticity of the epigenetic state of chromatin is thought to contribute to tumor evolution, metastasis, and drug resistance. However, the mechanisms leading to nongenetic cell-to-cell variation in gene expression remain poorly understood. Here we demonstrate that heritable transcriptional changes can result from the formation of micronuclei, aberrations of the nucleus that are common in cancer. Micronuclei have fragile nuclear envelopes (NE) that are prone to spontaneous rupture, which exposes chromosomes to the cytoplasm and disrupts many nuclear activities. Using a combination of long-term live-cell imaging and same-cell, single-cell RNA sequencing (Look-Seq2), we identified significant reduction of gene expression in micronuclei, both before and after NE rupture. Furthermore, chromosomes in micronuclei fail to normally recover histone 3 lysine 27 acetylation, a critical step for the reestablishment of normal transcription after mitosis. These transcription and chromatin defects can persist into the next generation in a subset of cells, even after these chromosomes are incorporated into normal daughter nuclei. Moreover, persistent transcriptional repression is strongly associated with, and may be explained by, surprisingly long-lived DNA damage to these reincorporated chromosomes. Therefore, heritable alterations in transcription can originate from aberrations of nuclear architecture.


2021 ◽  
Author(s):  
Priyojit Das ◽  
Tongye Shen ◽  
Rachel Patton McCord

Inside the nucleus, chromosomes are subjected to direct physical interaction between different components, active forces, and thermal noise, leading to the formation of an ensemble of three-dimensional structures. However, it is still not well understood to what extent and how the structural ensemble varies from one chromosome region or cell-type to another. We designed a statistical analysis technique and applied it to single-cell chromosome imaging data to reveal the fluctuation of individual chromosome structures. By analyzing the resulting structural landscape, we find that the largest dynamic variation is the overall radius of gyration of the chromatin region, followed by domain reorganization within the region. By comparing different human cell-lines and experimental perturbations data using this statistical analysis technique and a network entropy approach, we identify both cell-type and condition-specific features of the structural landscapes. We identify a relationship between epigenetic state and the properties of chromosome structure fluctuation and validate this relationship through polymer simulations. Overall, our study suggests that the types of variation in a chromosome structure ensemble are cell-type as well as region-specific and can be attributed to constraints placed on the structure by factors such as variation in epigenetic state.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ida Micaily ◽  
Megan Roche ◽  
Mohammad Y. Ibrahim ◽  
Ubaldo Martinez-Outschoorn ◽  
Atrayee Basu Mallick

Chondrosarcomas are the second most common primary bone malignancy. Chondrosarcomas are characterized by the production of cartilaginous matrix and are generally resistant to radiation and chemotherapy and the outcomes are overall poor. Hence, there is strong interest in determining mechanisms of cancer aggressiveness and therapeutic resistance in chondrosarcomas. There are metabolic alterations in chondrosarcoma that are linked to the epigenetic state and tumor microenvironment that drive treatment resistance. This review focuses on metabolic changes in chondrosarcoma, and the relationship between signaling via isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), hedgehog, PI3K-mTOR-AKT, and SRC, as well as histone acetylation and angiogenesis. Also, potential treatment strategies targeting metabolism will be discussed including potential synergy with immunotherapies.


2021 ◽  
Vol 8 (11) ◽  
pp. 134
Author(s):  
Marie Günthel ◽  
Karel van van Duijvenboden ◽  
Dennis E. M. de de Bakker ◽  
Ingeborg B. Hooijkaas ◽  
Jeroen Bakkers ◽  
...  

Myocardial infarction causes ventricular muscle loss and formation of scar tissue. The surviving myocardium in the border zone, located adjacent to the infarct, undergoes profound changes in function, structure and composition. How and to what extent these changes of border zone cardiomyocytes are regulated epigenetically is not fully understood. Here, we obtained transcriptomes of PCM-1-sorted mouse cardiomyocyte nuclei of healthy left ventricle and 7 days post myocardial infarction border zone tissue. We validated previously observed downregulation of genes involved in fatty acid metabolism, oxidative phosphorylation and mitochondrial function in border zone-derived cardiomyocytes, and observed a modest induction of genes involved in glycolysis, including Slc2a1 (Glut1) and Pfkp. To gain insight into the underlying epigenetic regulatory mechanisms, we performed H3K27ac profiling of healthy and border zone cardiomyocyte nuclei. We confirmed the switch from Mef2- to AP-1 chromatin association in border zone cardiomyocytes, and observed, in addition, an enrichment of PPAR/RXR binding motifs in the sites with reduced H3K27ac signal. We detected downregulation and accompanying epigenetic state changes at several key PPAR target genes including Ppargc1a (PGC-1a), Cpt2, Ech1, Fabpc3 and Vldrl in border zone cardiomyocytes. These data indicate that changes in epigenetic state and gene regulation underlie the maintained metabolic switch in border zone cardiomyocytes.


2021 ◽  
Author(s):  
Colin Farrell ◽  
Kalsuda Lapborisuth ◽  
Chanyue Hu ◽  
Kyle Pu ◽  
Sagi Snir ◽  
...  

Epigenetic clocks, DNA methylation based chronological age prediction models, are commonly employed to study age related biology. The error between the predicted and observed age is often interpreted as a form of biological age acceleration and many studies have measured the impact of environmental and other factors on epigenetic age. Epigenetic clocks are fit using approaches that minimize the error between the predicted and observed chronological age and as a result they reduce the impact of factors that may moderate the relationship between actual and epigenetic age. Here we compare the standard methods used to construct epigenetic clocks to an evolutionary framework of epigenetic aging, the epigenetic pacemaker (EPM) that directly models DNA methylation as a function of a time dependent epigenetic state. We show that the EPM is more sensitive than epigenetic clocks for the detection of factors that moderate the relationship between actual age and epigenetic state (ie epigenetic age). Specifically, we show that the EPM is more sensitive at detecting sex and cell type effects in a large aggregate data set and in an example case study is more sensitive sensitive at detecting age related methylation changes associated with polybrominated biphenyl exposure. Thus we find that the pacemaker provides a more robust framework for the study of factors that impact epigenetic age acceleration than traditional clocks based on linear regression models.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rajesh Sharma ◽  
Kyoung-Jae Choi ◽  
My Diem Quan ◽  
Sonum Sharma ◽  
Banumathi Sankaran ◽  
...  

AbstractExpression of a few master transcription factors can reprogram the epigenetic landscape and three-dimensional chromatin topology of differentiated cells and achieve pluripotency. During reprogramming, thousands of long-range chromatin contacts are altered, and changes in promoter association with enhancers dramatically influence transcription. Molecular participants at these sites have been identified, but how this re-organization might be orchestrated is not known. Biomolecular condensation is implicated in subcellular organization, including the recruitment of RNA polymerase in transcriptional activation. Here, we show that reprogramming factor KLF4 undergoes biomolecular condensation even in the absence of its intrinsically disordered region. Liquid–liquid condensation of the isolated KLF4 DNA binding domain with a DNA fragment from the NANOG proximal promoter is enhanced by CpG methylation of a KLF4 cognate binding site. We propose KLF4-mediated condensation as one mechanism for selectively organizing and re-organizing the genome based on the local sequence and epigenetic state.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
David M Garcia ◽  
Edgar A Campbell ◽  
Christopher M Jakobson ◽  
Mitsuhiro Tsuchiya ◽  
Ethan A Shaw ◽  
...  

In fluctuating environments, switching between different growth strategies, such as those affecting cell size and proliferation, can be advantageous to an organism. Trade-offs arise, however. Mechanisms that aberrantly increase cell size or proliferation—such as mutations or chemicals that interfere with growth regulatory pathways—can also shorten lifespan. Here we report a natural example of how the interplay between growth and lifespan can be epigenetically controlled. We find that a highly conserved RNA-modifying enzyme, the pseudouridine synthase Pus4/TruB, can act as a prion, endowing yeast with greater proliferation rates at the cost of a shortened lifespan. Cells harboring the prion grow larger and exhibit altered protein synthesis. This epigenetic state, [BIG+] (better in growth), allows cells to heritably yet reversibly alter their translational program, leading to the differential synthesis of dozens of proteins, including many that regulate proliferation and aging. Our data reveal a new role for prion-based control of an RNA-modifying enzyme in driving heritable epigenetic states that transform cell growth and survival.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Cecilia Lövkvist ◽  
Pawel Mikulski ◽  
Svenja Reeck ◽  
Matthew Hartley ◽  
Caroline Dean ◽  
...  

The histone modification H3K27me3 plays a central role in Polycomb-mediated epigenetic silencing. H3K27me3 recruits and allosterically activates Polycomb Repressive Complex 2 (PRC2), which adds this modification to nearby histones, providing a read/write mechanism for inheritance through DNA replication. However, for some PRC2 targets, a purely histone-based system for epigenetic inheritance may be insufficient. We address this issue at the Polycomb target FLOWERING LOCUS C (FLC) in Arabidopsis thaliana, as a narrow nucleation region of only ~three nucleosomes within FLC mediates epigenetic state switching and subsequent memory over many cell cycles. To explain the memory’s unexpected persistence, we introduce a mathematical model incorporating extra protein memory storage elements with positive feedback that persist at the locus through DNA replication, in addition to histone modifications. Our hybrid model explains many features of epigenetic switching/memory at FLC and encapsulates generic mechanisms that may be widely applicable.


2021 ◽  
Author(s):  
Takashi Sado ◽  
Saya Ichihara ◽  
Koji Nagao ◽  
Takehisa Sakaguchi ◽  
Chikashi Obuse

Stable silencing of the inactive X chromosome (Xi) in female mammals is critical for the development of embryos and their postnatal health. SmcHD1 is essential for stable silencing of the Xi, and its functional deficiency results in derepression of many X-inactivated genes. Although SmcHD1 has been suggested to play an important role in the formation of higher order chromatin structure of the Xi, the underlying mechanism is largely obscure. Here we explore the epigenetic state of the Xi in SmcHD1-deficient epiblast stem cells (EpiSCs) and mouse embryonic fibroblasts (MEFs) in comparison with their wild-type counterparts. The results suggest that SmcHD1 underlies the formation of H3K9me3-enriched blocks on the Xi, which, although the importance of H3K9me3 has been largely overlooked in mice, play a critical role in the establishment of the stably silenced state. We propose that the H3K9me3 blocks formed on the Xi facilitate robust heterochromatin formation in combination with H3K27me3, and the substantial loss of H3K9me3 caused by SmcHD1 deficiency leads to aberrant distribution of H3K27me3 on the Xi and derepression of X-inactivated genes.


2021 ◽  
Author(s):  
Ling Tian ◽  
Monique Chavez ◽  
Gue Su Chang ◽  
Nichole M. Helton ◽  
Casey D.S. Katerndahl ◽  
...  

Kdm6a/Utx , a gene on the X chromosome, encodes a histone K27me3 demethylase that has an orthologue on the Y chromosome ( Uty ). We previously identified inactivating mutations of  Kdm6a  in approximately 50% of mouse acute promyelocytic leukemia samples; however, somatic mutations of  KDM6A  are more rare in human AML samples, ranging in frequency from 2-15% in different series of patients, where their role in pathogenesis is not yet clear. In this study, we show that female  Kdm6a flox/flox  mice (with allele inactivation initiated by  Vav1 -Cre in hematopoietic stem and progenitor cells (HSPCs) have a sex-specific phenotype that emerges with aging, with features resembling a myelodysplastic syndrome (MDS). Female  Kdm6a -knockout (KO) mice have an age-dependent expansion of their HSPCs with aberrant self-renewal, but they did not differentiate normally into downstream progeny. These mice became mildly anemic and thrombocytopenic, but did not develop overt leukemia, or die from these cytopenias. ChIP-seq and ATAC-seq studies showed only minor changes in H3K27me3, H3K27ac, H3K4me, H3K4me3 and chromatin accessibility between  Kdm6a -WT and  Kdm6a -KO mice. Utilizing scRNA-seq,  Kdm6a  loss was linked to the transcriptional repression of genes that mediate hematopoietic cell fate determination. These data demonstrate that  Kdm6a  plays an important role in normal hematopoiesis, and that its inactivation may contribute to AML pathogenesis by altering the epigenetic state of HSPCs .


Sign in / Sign up

Export Citation Format

Share Document