acid corrosion
Recently Published Documents


TOTAL DOCUMENTS

603
(FIVE YEARS 143)

H-INDEX

43
(FIVE YEARS 8)

Author(s):  
V. R. Adinarayanan ◽  
P. Preethi Kumari ◽  
Suma A. Rao

AbstractSynthesis and inhibition effectiveness of (2E)-2-(furan-2-ylmethylidene) hydrazine carbothioamide (FMHC) as an inhibitor for corrosion of mild steel in 0.5 M H2SO4 is reported. Experiments were conducted at various temperatures (303–323 K) by adopting potentiodynamic polarization and electrochemical impedance spectroscopy. Readings obtained demonstrated that percentage inhibition efficiency (% IE) improved with the upsurge in the concentration of FMHC, while it decreased with a rise in temperature. The highest % IE observed was 60% for 2.5 × 10–4 M FMHC at 303 K. FMHC worked moderately as a mixed inhibitor. FMHC obeyed the Langmuir model of adsorption and the mode of adsorption was physisorption on the mild steel surface which was further endorsed by examining the surface using the scanning electron microscope. A clear insight into the mechanistic features of corrosion inhibition by using FMHC was acquired. Calculation of activation parameters helped to suggest an appropriate mechanism for the adsorption of FMHC on mild steel through quantum chemical calculations using density functional theory (DFT). Graphical abstract


Author(s):  
M. Maeda ◽  
H. Hamada ◽  
Y. Fujii
Keyword(s):  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xiaoxiao Cao ◽  
Meimei Feng ◽  
Kangsheng Yuan

During the construction of geotechnical engineering in cold regions, the stability of rock is inevitably affected by freeze-thaw cycles and hydrochemical corrosion. In order to study the effect of hydrochemical corrosion on dynamic mechanical properties of freeze-thaw rocks, dynamic compression tests were carried out on sandstone samples corroded by four different concentrations of HCl solutions with the same number of freeze-thaw cycles using split-Hopkinson pressure bar (SHPB) test system. The coupling effects of freeze-thaw cycles with different concentrations of HCl solutions and strain rate on mechanical properties of sandstones were explored. The results showed that strain rate could enhance the dynamic compressive strength and peak strain but had no significant effect on the elastic modulus. The coupling effect of freeze-thaw cycles and acid corrosion weakened the dynamic compressive strength, and elastic modulus but enhanced the peak strain. In addition, X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used to analyze the changes of mineral composition and microstructure damage of sandstone samples under the coupling effect of acid corrosion and freeze-thaw cycles. The analysis results were basically consistent with the damage characteristics of macro mechanical properties. The research results can provide reference for open pit coal mining in cold regions.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7109
Author(s):  
Wei Yang ◽  
Pinghua Zhu ◽  
Hui Liu ◽  
Xinjie Wang ◽  
Wei Ge ◽  
...  

Geopolymer binder is expected to be an optimum alternative to Portland cement due to its excellent engineering properties of high strength, acid corrosion resistance, low permeability, good chemical resistance, and excellent fire resistance. To study the sulfuric acid corrosion resistance of geopolymer concrete (GPC) with different binding materials and concentrations of sodium hydroxide solution (NaOH), metakaolin, high-calcium fly ash, and low-calcium fly ash were chosen as binding materials of GPC for the geopolymerization process. A mixture of sodium silicate solution (Na2SiO3) and NaOH solution with different concentrations (8 M and 12 M) was selected as the alkaline activator with a ratio (Na2SiO3/NaOH) of 1.5. GPC specimens were immersed in the sulfuric acid solution with the pH value of 1 for 6 days and then naturally dried for 1 day until 98 days. The macroscopic properties of GPC were characterized by visual appearance, compressive strength, mass loss, and neutralization depth. The materials were characterized by SEM, XRD, and FTIR. The results indicated that at the immersion time of 28 d, the compressive strength of two types of fly ash-based GPC increased to some extent due to the presence of gypsum, but this phenomenon was not observed in metakaolin-based GPC. After 98 d of immersion, the residual strength of fly ash based GPC was still higher, which reached more than 25 MPa, while the metakaolin-based GPC failed. Furthermore, due to the rigid 3D networks of aluminosilicate in fly ash-based GPC, the mass of all GPC decreased slightly during the immersion period, and then tended to be stable in the later period. On the contrary, in metakaolin-based GPC, the incomplete geopolymerization led to the compressive strength being too low to meet the application of practical engineering. In addition, the compressive strength of GPC activated by 12 M NaOH was higher than the GPC activated by 8 M NaOH, which is owing to the formation of gel depended on the concentration of alkali OH ion, low NaOH concentration weakened chemical reaction, and reduced compressive strength. Additionally, according to the testing results of neutralization depth, the neutralization depth of high-calcium fly ash-based GPC activated by 12 M NaOH suffered acid attack for 98 d was only 6.9 mm, which is the minimum value. Therefore, the best performance was observed in GPC prepared with high-calcium fly ash and 12 M NaOH solution, which is attributed to gypsum crystals that block the pores of the specimen and improve the microstructure of GPC, inhibiting further corrosion of sulfuric acid.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Emad ElDin El-Katori ◽  
Nady Hashem

Purpose The purpose of this paper is to minimize corrosion-related pollution in the environment. From the lemongrass extract (LGE), the authors selected one of the best green inhibitors. Design/methodology/approach The corrosion and inhibition of mild steel in traditional acidification solutions were estimated by electrochemical measurements. The corrosion appearance was observed with scanning electron microscopy, atomic force microscopy micrographs and attenuated total reflectance infrared spectroscopy spectrum. The correlation was formed between the gained inhibition efficiency (IE)% from electrochemical measurements and certain quantum chemical parameters. Findings The results displayed that the IE was up to 90% when the LGE concentration was 300 ppm. The results confirmed that the theoretical experiments are very similar to the experimental observations. Originality/value For the first time, LGE was used as a cheap and safe corrosion inhibitor for mild steel corrosion in the acidification process. The mechanism of mild steel corrosion and anti-corrosion in acid solution has been suggested.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012079
Author(s):  
S B Gjertsen ◽  
A Palencsar ◽  
M Seiersten ◽  
T H Hemmingsen

Abstract Models for predicting top-of-line corrosion (TLC) rates on carbon steels are important tools for cost-effectively designing and operating natural gas transportation pipelines. The work presented in this paper is aimed to investigate how the corrosion rates on carbon steel is affected by acids typically present in the transported pipeline fluids. This investigation may contribute to the development of improved models. In a series of experiments, the corrosion rate differences for pure CO2 (carbonic acid) corrosion and pure organic acid corrosion (acetic acid and formic acid) on X65 carbon steel were investigated at starting pH values; 4.5, 5.3, or 6.3. The experiments were conducted in deaerated low-salinity aqueous solutions at atmospheric pressure and temperature of 65 °C. The corrosion rates were evaluated from linear polarization resistance data as well as mass loss and released iron concentration. A correlation between lower pH values and increased corrosion rates was found for the organic acid experiments. However, the pH was not the most critical factor for the rates of carbon steel corrosion in these experiments. The experimental results showed that the type of acid species involved and the concentration of the undissociated acid in the solution influenced the corrosion rates considerably.


2021 ◽  
Vol 73 (11) ◽  
pp. 46-49
Author(s):  
J. Wu ◽  
J. Sickorez ◽  
J. Street ◽  
P. Tonmukayakul ◽  
J. Lee ◽  
...  

The purpose of acid stimulation of carbonate formations is to increase production. The essential component for these stimulation fluids is the carbonate-dissolving agent, which creates conductivity channels connecting the reservoir with the wellbore. Controlling the reactivity of hydrochloric acid (HCl), the most-used dissolving agent due to its high dissolving capacity, wide availability, and low unit cost, is the most viable approach to successfully stimulate a high-temperature carbonate reservoir. It is essential to retard the HCl-carbonate rock reaction to achieve the optimum balance between total fluid used and enhanced well production. It is well documented that the conventional emulsified acid exhibits high friction pressure, is cumbersome to prepare, and performs with sensitivity to a multitude of parameters. These drawbacks have prevented the industrywide adoption of this method. The recently developed single-aqueous-phase retarded acid (SAPRA) designed for primarily 15–25% HCl solutions represents a significant step forward. The first successful field implementation of SAPRA took place offshore the Malaysian state of Sarawak in early 2021. At Sarawak, the HCl reactivity was regulated and retarded by a single potent low- dosage additive, which is compatible with selected acid corrosion inhibitors, nonemulsifiers, H2S scavengers, other commonly used additives, and if necessary, friction reducers. Improving Acid Stimulation Efficiency The technical approach behind SAPRA is based on chemical technology that enables the reduction of the reaction rate and allows the control of the diffusion/mass transfer mechanism. This is key in designing the acid treatment to optimize chemical program cost and well production and has been extensively studied (Al Moajil et al. 2020; Czupski et al. 2020; Daeffler et al. 2018; and Abdrazakov et al. 2018). The technology was developed utilizing a surface barrier concept where transiently adsorbed retarder molecules adhere to a carbonate surface and thus, delay the hydrogen ion carbonate reaction over a range of acid concentrations and operating temperatures. Due to the complexity of the chemical interactions among all the additives in the acid fluid system, the selected additives must be screened to ensure mutual compatibility before conducting performance testing such as corrosion rate, calcite solubility capacity characterization, and coreflow measurements. Incompatible chemistry could lead to severe corrosion issues such as the examples shown in Table 1.


Sign in / Sign up

Export Citation Format

Share Document