banker plant
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Eizi Yano

Abstract In Japan, augmentative biological control is mainly implemented in greenhouses using arthropod natural enemies. Two imported natural enemy species, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) against spider mites and Encarsia formosa Gahan (Hymenoptera: Aphelinidae) against the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae), were first commercialised in greenhouses in 1995, followed by the commercialisation of other exotic species. Exotic arthropod natural enemies are used to control both exotic and indigenous pests in greenhouses. Currently, the most popular exotic natural enemy species are predatory mites such as P. persimilis and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Recently, there has been a shift from using exotic to using indigenous natural enemies in greenhouses. Currently, the importation of generalist predators for augmentative biological control is very difficult in Japan. Several collaborative studies have been conducted in Japan to develop biological control using indigenous natural enemies. These studies developed innovative technologies, such as new banker plant systems based on combinations of two natural enemies or flightless Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Indigenous natural enemies have been commercialised following the registration of Orius strigicollis (Poppius) (Hemiptera: Anthocoridae). Biological control can be achieved using an indigenous strain of Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) with a banker plant system, on which the bug can reproduce without alternative prey. Research and development of biological control using indigenous natural enemies should be continued in Japan.


Author(s):  
Fernando Teruhiko Hata ◽  
Pedro Henrique Togni ◽  
Maurício Ursi Ventura ◽  
José Eduardo Poloni da Silva ◽  
Nilson Zacarias Ferreira ◽  
...  

Abstract Non-crop plant diversity plays a fundamental role in the conservation of predatory mite (PM) and can be proposed as a banker plant system (BPS). BPSs provide plants that host natural enemies in greenhouses or field crops and may improve the efficiency of biological control. The aim of this study was to investigate if a diverse plant composition could be a suitable BPS for PMs in strawberry crops. A plant inventory characterized 22 species of non-crop plants harboring PMs. The most abundant PMs, in decreasing order, were Neoseiulus californicus, Neoseiulus anonymus, Euseius citrifolius, and Euseius concordis. PMs were randomly distributed among plants. We also found specific associations of Phytoseiidae species and phytophagous or generalist mites on plants. Due to this, four species were deemed suitable as banker plants: Capsicum sp., Leonurus sibiricus, Solanum americanum, and Urochloa mutica. Moreover, these plants combined a high PMs density and a low occurrence or absence of pest-mites. This study suggests shifting the traditional view that BPSs are composed of a limited number of species to use plant assemblages. This contributes to both conservation and augmentative biological control.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1014
Author(s):  
Jie Wang ◽  
Shu Li ◽  
Jun Yang ◽  
Mingcheng Guo ◽  
Huijie Dai ◽  
...  

Banker plant systems can be used to sustain a reproducing population of biological control agents (BCAs) within a crop, thus providing long-term pest suppression. The founder population of natural enemies in banker plant systems is usually mass-reared on factitious hosts. Thus, a better understanding of the population fitness and pest control performance of mass-reared BCAs in the field is crucial when developing integrated pest management (IPM) strategies. In this study, we determined the fitness of the generalist predator, Chrysopa pallens (Hemiptera: Chrysopidae) ever cultured on different food sources (i.e., mass rearing food, Corcyra cephalonica eggs, and aphid food, Megoura japonica) preying on Aphis craccivora in a banker plant system in a greenhouse based on Chi’s age-stage, two-sex life table analysis method. The life tables and predation rate parameters of C. pallens were not significantly different between both treatments under fluctuating temperature conditions. Corcyracephalonica eggs did not significantly weaken the performances of C. pallens in a Vicia faba–A. craccivora banker plant system compared to aphids. In conclusion, C. cephalonica eggs can be used for the mass production of C. pallens as the founder population in a banker plant system. Moreover, linking the life table data with the predation rate is an effective strategy for evaluating mass rearing programs in establishing banker plant systems.


2021 ◽  
Author(s):  
Xu Chen ◽  
Coline C. Jaworski ◽  
Huijie Dai ◽  
Yuyong Liang ◽  
Xiaojun Guo ◽  
...  

Abstract Banker plants increase biological pest control by supporting populations of non-pest arthropod species used as alternative hosts or prey by natural enemies. Due to the specificity of trophic interactions, banker plants may not efficiently promote natural enemies with different ecologies. Yet in most cropping systems different pest species are present together and require different biocontrol agents to efficiently control them. In the present study, we tested the combined use of two banker plants and their associated prey / host to enhance populations of the specialist parasitoid Encarsia formosa targeting the main tomato pest Bemisia tabaci, and a polyphagous ladybird Propylea japonica targeting the secondary pest Myzus persicae in tomato crops. In a laboratory and a greenhouse experiment, we measured the abundances of these four species using the Ricinus communis – Trialeurodes ricini banker plant system alone, in combination with the Glycines max – Megoura japonica system, or in absence of banker plants. We found that the first banker plant system enhanced populations of E. formosa, resulting in higher control of B. tabaci populations and the suppression of their outbreak in both our laboratory and greenhouse experiment. Conversely, abundances of P. japonica were not affected by this first system, but were significantly increased when the second was present. This resulted in high control of M. persicae populations and the suppression of their early and late outbreaks. Our study demonstrates the potential for combined banker plants to provide long-term, sustainable control of multiple pests by their target natural enemies in complex agroecosystems.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 397
Author(s):  
Chang-Rong Zhang ◽  
Mei Liu ◽  
Fei-Xue Ban ◽  
Xiao-Li Shang ◽  
Shao-Lan Liu ◽  
...  

The stick tea thrip Dendrothrips minowai (Priesner) (Thysanoptera: Thripidae) is a destructive pest in tea plantations in south and southwest China. To control this pest, a non-crop banker plant system was developed using a polyphagous predator Orius strigicollis (Poppius) (Heteroptera: Anthocoridae) with the black bean aphid Aphis fabae (Scopoli) (Hemiptera: Aphididae) as an alternative prey and the faba bean Vicia faba as the banker plant to support the predator in targeting the pest. The fitness of A. fabae on tea plants and faba bean was evaluated to determine its host specificity. Moreover, the control efficacy of the banker plant system on D. minowai on tea plants was tested in the laboratory and compared with that of direct release of O. strigicollis. The experiments showed that faba bean was an excellent non-crop host for A. fabae because, while the aphid population increased quickly on faba bean, it could only survive for up to 9 days on tea plants. Compared with direct release of O. strigicollis, lower densities of pest were observed when introducing the banker plant system. Our results indicate that this banker plant system has the potential to be implemented in the field to improve the control of the pest thrips.


2020 ◽  
Vol 12 (19) ◽  
pp. 8031
Author(s):  
Vivek Kumar ◽  
Cindy L. McKenzie ◽  
Pasco B. Avery ◽  
Lance S. Osborne

A banker plant system is a rearing and release method for biological control agents, and in recent years has gained serious attention among plant propagators for its use in regulating common greenhouse and nursery pests. In the current study, the suitability of four ornamental pepper (Capsicum annuum L.; Solanales: Solanaceae) banker plant candidates, Black Pearl (BP), Explosive Ember (EE), Masquerade (MA), Red Missile (RM), and a commercial pepper cultivar, Blitz (BL), were evaluated with three main objectives: (1) to assess host preference of three major arthropod pests of agricultural importance, Bemisia tabaci Gennadius, Polyphagotarsonemus latus Banks, and Frankliniella occidentalis Pergande among selected pepper cultivars; (2) to determine the susceptibility of plant cultivars to three different pests; and (3) to assess the effect of tuft domatia on the abundance of the predatory mite Amblyseius swirskii Athias–Henriot. In choice and no-choice assays, BL and BP were highly susceptible to P. latus with a moderately high damage rating index of >3.5/5; B. tabaci and F. occidentalis were abundant on BL and EE. A positive correlation was observed between the number of tuft domatia and the A. swirskii count. Although all ornamental pepper cultivars exhibited varying degrees of susceptibility to different arthropod pests, if used strategically, cultivars MA and RM can be used to develop a banker plant system and help reduce multiple pests in greenhouses or interiorscapes.


2020 ◽  
Vol 55 (2) ◽  
pp. 249-257
Author(s):  
Koukichi Nagasaka ◽  
Aki Sagisaka ◽  
Seiichi Moriya ◽  
Takayuki Mitsunaga

Insects ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 213 ◽  
Author(s):  
Hugh A. Smith ◽  
Karol L. Krey

The sweetpotato whitefly, Bemisia tabaci, is a pest of greenhouse-grown tomato. Restrictions on insecticides in enclosed structures and the presence of commercial pollinators limit the options for the chemical control of whiteflies in greenhouses, increasing the importance of biological controls. Dicyphus hesperus is a zoophytophagous mirid predator native to North America. Three release rates of D. hesperus were evaluated on greenhouse tomato for control of the sweetpotato whitefly. The release rates were one, two or three adult D. hesperus per tomato plant each week for three weeks in cages containing four tomato plants and one mullein banker plant. There were fewer whitefly eggs in cages receiving predators than untreated cages one week after the third release, and fewer whitefly nymphs in cages receiving predators two weeks after the third release. There were no statistical differences in whitefly eggs or nymphs among predator release treatments. The highest release rate resulted in a 60% reduction in whitefly nymphs. Forty-two days after the first predator releases, there were no differences among release treatments in the number of D. hesperus. Our results indicate that D. hesperus can contribute management of B. tabaci on greenhouse tomato, but that it may be insufficient as a sole strategy.


Sign in / Sign up

Export Citation Format

Share Document