insect pest control
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 45)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Paula Felizatti ◽  
Roberta Maria Manzano ◽  
Inajá Marchizeli Wenzel Rodrigues ◽  
Maria Fátima das Graças Fernandes da Silva ◽  
João Batista Fernandes ◽  
...  

The fungus Beauveria bassiana is widely used for pest control; however, biostability and dispersion for broth pulverization are limiting factors for its application in the field. In this context, formulation techniques such as microencapsulation are viable alternatives. The aim of this work is to optimize B. bassiana formulations by spray dryer and evaluate its stability and biological activity against Spodoptera cosmioides compared to ionic gelatinization formulations. The fungus was biocompatible with all evaluated biopolymers (lignin, cellulose, starch, humic substances, and alginate). The encapsulation by spray drying was optimized by factorial design in an inlet and outlet air temperature of 120°C and 68°C, respectively; aspirator rate of 35 m3·h−1, feed flow rate of 12 mL·min−1; and drying gas flow at 35 L·h−1. The ionic gelation capsules were obtained using a 0.5% quantity of conidia in a 1% sodium alginate solution dropped into a 0.5 mol·L−1 CaCl2 solution using a peristaltic pump. Spray drying provided smaller microcapsules than those by ionic gelation. Both techniques produced more stable conidia when exposed to temperature and UV-radiation than non-formulated B. bassiana. The formulations prepared by spray drying showed gains at aqueous dispersion. Biological assays against Spodoptera cosmioides showed a mortality rate of up to 90%. These results demonstrate the suitability of encapsulating B. bassiana conidia stably in aqueous dispersion without loss of viability and virulence.


2021 ◽  
Vol 70 ◽  
pp. 158-166
Author(s):  
Qiang Zhang ◽  
Wei Dou ◽  
Clauvis Nji Tizi Taning ◽  
Guy Smagghe ◽  
Jin-Jun Wang

Author(s):  
John Manu ◽  
J.V.K Afun

This study was conducted to evaluate the efficacy of synthetic insecticides in managing Helicoverpa armigera Mill in tomato production. The experiment was conducted during the major and minor tomato growing seasons at the Sekyere Kumawu and Asante Akim North districts in Ghana. The experimental design was a 3 x 5 factorial randomized complete block with four replications. Four insect pest control regimes were evaluated for their effectiveness in controlling the tomato fruit borer. Three tomato varieties were used in this experiment. The results showed that, significantly, higher marketable fruit yields were obtained on the sprayed plots than the control plots. In general, the variety “pectomec” suffered the highest yield loss on the water sprayed field, followed by UC 82 and lastly, power rhino, although all the varieties suffered losses greater than 50%. This shows that none of the varieties used for this study is completely resistant to Helicoverpa armigera. Yields were generally higher in the major season (March-July) than in the minor season (September-December) for pectomec and power rhino. The best insecticides are Oxymatrin (2.4%), Lambda-cyhalothrin (2.5%) and Dimethoate (400g/l) +Cypermethrin (36g/l) in descending order. Contrarily, UC 82 had low yields in the major season than in the minor season. The study recommends that Helicoverpa armigera Mill should be controlled with pesticides to improve yields of tomato.


2021 ◽  
Author(s):  
Xuan Li ◽  
D. Ken Giles ◽  
John T. Andaloro ◽  
Rachael Long ◽  
Edward B. Lang ◽  
...  

Plant Gene ◽  
2021 ◽  
Vol 26 ◽  
pp. 100271
Author(s):  
Kuntala Sarma Bordoloi ◽  
Niraj Agarwala

Author(s):  
M. O. Omobowale ◽  
O. P. Akomolafe

Storage of cowpea is highly constrained by insect pest infestation and losses caused by the cowpea weevil (Callosobruchus maculatus, F.) are high. Several methods have been used over the years to protect cowpea grains in storage, but the use of synthetic insecticides is very dominant and this has led to problems, such as the killing of non-target species, user hazards, harmful food residues, and evolution of resistance to chemicals. A search for alternative insect pest control methods which are relatively less harmful to the user and cheaper has become essential. The effectiveness of Diatomaceous earth (DE) and Vitellaria paradoxa seed oil (VPSO) for cowpea storage in polypropylene and jute bags under ventilated and non-ventilated storeroom conditions were investigated over three months period. Crude DE was applied at a dose rate of 1 g/kg of cowpea and a diluted concentration (10% v/v) of VPSO of 400 mL was mixed with 8 kg of cowpea. Live insect count, dead insect count, and germination percentage were assessed weekly while proximate analysis was carried out before and after storage. Mean live insect count increased in the ventilated store-room from 0.67±0.34 to 36.13±19.51insects/kg after 1 month and 3 months of storage respectively for untreated cowpea. Insect population in treated samples increased from 0.38±0.26to 24.78±23.33, and from 0.17±0.30 to 10.75±5.27 for DE and VPSO treated samples, respectively. In the non-ventilated storeroom, insect population increased from 0.33±0.26 to 36.96±19.09 for untreated cowpea, 0.17±0.20 to 33.08±30.07 for DE and 0.21±5.63 to 8.17±11.30 for VPSO treated cowpea. Based on insect count, both treatments were very effective in controlling cowpea weevil in the first two months of storage, however their potency reduced by the third month. The potency of DE deteriorated faster compared to VPSO however, DE treated cowpea was most effective for retaining seed germination in both ventilated and non-ventilated storerooms. Proximate analysis showed that cowpea treated with both treatments had similar nutrient composition after storage. Diatomaceous earth and Vitellaria paradoxa seed oil have potentials in their raw form for short term insect pest control in the storage of cowpea.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 370
Author(s):  
Zuo-min Shao ◽  
Jian-hao Ding ◽  
De-lei Jiang ◽  
Zhi-xiang Liu ◽  
Yi-jiangcheng Li ◽  
...  

Glyphodes pyloalis Walker (G. pyloalis) is a serious pest on mulberry. Due to the increasing pesticide resistance, the development of new and effective environmental methods to control G. pyloalis is needed. Trehalase is an essential enzyme in trehalose hydrolysis and energy supply, and it has been considered a promising target for insect pest control. However, the specific function of trehalase in G. pyloalis has not been reported. In this study, two trehalase genes (GpTre1 and GpTre2) were identified from our previous transcriptome database. The functions of the trehalase in chitin metabolism were studied by injecting larvae with dsRNAs and trehalase inhibitor, Validamycin A. The open reading frames (ORFs) of GpTre1 and GpTre2 were 1,704 bp and 1,869 bp, which encoded 567 and 622 amino acid residues, respectively. Both of GpTre1 and GpTre2 were mainly expressed in the head and midgut. The highest expression levels of them were in 5th instar during different development stages. Moreover, knockdown both of GpTre1 and GpTre2 by the dsRNAs led to significantly decreased expression of chitin metabolism pathway-related genes, including GpCHSA, GpCDA1, GpCDA2, GpCHT3a, GpCHT7, GpCHSB, GpCHT-h, GpCHT3b, GpPAGM, and GpUAP, and abnormal phenotypes. Furthermore, the trehalase inhibitor, Validamycin A, treatment increased the expressions of GpTre1 and GpTre2, increased content of trehalose, and decreased the levels of glycogen and glucose. Additionally, the inhibitor caused a significantly increased cumulative mortality of G. pyloalis larvae on the 2nd (16%) to 6th (41.3%) day, and decreased the rate of cumulative pupation (72.3%) compared with the control group (95.6%). After the activities of trehalase were suppressed, the expressions of 6 integument chitin metabolism-related genes decreased significantly at 24 h and increased at 48 h. The expressions of GpCHSB and GpCHT-h, involved in chitin metabolism pathway of peritrophic membrane in the midgut, increased at 24 h and 48 h, and there were no changes to GpCHT3b and GpPAGM. These results reveal that GpTre1 and GpTre2 play an essential role in the growth of G. pyloalis by affecting chitin metabolism, and this provides useful information for insect pest control in the future.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 346
Author(s):  
Marc J. B. Vreysen ◽  
Adly M. M. Abd-Alla ◽  
Kostas Bourtzis ◽  
Jeremy Bouyer ◽  
Carlos Caceres ◽  
...  

The Joint FAO/IAEA Centre (formerly called Division) of Nuclear Techniques in Food and Agriculture was established in 1964 and its accompanying laboratories in 1961. One of its subprograms deals with insect pest control, and has the mandate to develop and implement the sterile insect technique (SIT) for selected key insect pests, with the goal of reducing the use of insecticides, reducing animal and crop losses, protecting the environment, facilitating international trade in agricultural commodities and improving human health. Since its inception, the Insect Pest Control Laboratory (IPCL) (formerly named Entomology Unit) has been implementing research in relation to the development of the SIT package for insect pests of crops, livestock and human health. This paper provides a review of research carried out between 2010 and 2020 at the IPCL. Research on plant pests has focused on the development of genetic sexing strains, characterizing and assessing the performance of these strains (e.g., Ceratitis capitata), elucidation of the taxonomic status of several members of the Bactrocera dorsalis and Anastrepha fraterculus complexes, the use of microbiota as probiotics, genomics, supplements to improve the performance of the reared insects, and the development of the SIT package for fruit fly species such as Bactrocera oleae and Drosophila suzukii. Research on livestock pests has focused on colony maintenance and establishment, tsetse symbionts and pathogens, sex separation, morphology, sterile male quality, radiation biology, mating behavior and transportation and release systems. Research with human disease vectors has focused on the development of genetic sexing strains (Anopheles arabiensis, Aedes aegypti and Aedes albopictus), the development of a more cost-effective larvae and adult rearing system, assessing various aspects of radiation biology, characterizing symbionts and pathogens, studying mating behavior and the development of quality control procedures, and handling and release methods. During the review period, 13 coordinated research projects (CRPs) were completed and six are still being implemented. At the end of each CRP, the results were published in a special issue of a peer-reviewed journal. The review concludes with an overview of future challenges, such as the need to adhere to a phased conditional approach for the implementation of operational SIT programs, the need to make the SIT more cost effective, to respond with demand driven research to solve the problems faced by the operational SIT programs and the use of the SIT to address a multitude of exotic species that are being introduced, due to globalization, and established in areas where they could not survive before, due to climate change.


Sign in / Sign up

Export Citation Format

Share Document