antiradical properties
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 43)

H-INDEX

18
(FIVE YEARS 6)

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7099
Author(s):  
Leyla Polat Kose ◽  
İlhami Gulcin

In this study, the antioxidant and antiradical properties of some phyto lignans (nordihydroguaiaretic acid, secoisolariciresinol, secoisolariciresinol diglycoside, and α-(-)-conidendrin) and mammalian lignans (enterodiol and enterolactone) were examined by different antioxidant assays. For this purpose, radical scavenging activities of phyto and mammalian lignans were realized by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) radical (ABTS•+) scavenging assay and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging assay. Additionally, the reducing ability of phyto and mammalian lignans were evaluated by cupric ions (Cu2+) reducing (CUPRAC) ability, and ferric ions (Fe3+) and [Fe3+-(TPTZ)2]3+ complex reducing (FRAP) abilities. Also, half maximal inhibitory concentration (IC50) values were determined and reported for DPPH• and ABTS•+ scavenging influences of all of the lignan molecules. The absorbances of the lignans were found in the range of 0.150–2.320 for Fe3+ reducing, in the range of 0.040–2.090 for Cu2+ reducing, and in the range of 0.360–1.810 for the FRAP assay. On the other hand, the IC50 values of phyto and mammalian lignans were determined in the ranges of 6.601–932.167 µg/mL for DPPH• scavenging and 13.007–27.829 µg/mL for ABTS•+ scavenging. In all of the used bioanalytical methods, phyto lignans, as secondary metabolites in plants, demonstrated considerably higher antioxidant activity compared to that of mammalian lignans. In addition, it was observed that enterodiol and enterolactone exhibited relatively weaker antioxidant activities when compared to phyto lignans or standard antioxidants, including butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), Trolox, and α-tocopherol.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1707
Author(s):  
Gabriel Marc ◽  
Anca Stana ◽  
Ana Horiana Franchini ◽  
Dan Cristian Vodnar ◽  
Gabriel Barta ◽  
...  

Oxidative stress represents the underlying cause of many chronic diseases in human; therefore, the development of potent antioxidant compounds for preventing or treating such conditions is useful. Starting from the good antioxidant and antiradical properties identified for the previously reported Dihydroxy-Phenyl-Thiazol-Hydrazinium chloride (DPTH), we synthesized a congeneric series of phenolic thiazoles. The radical scavenging activity, and the antioxidant and chelation potential were assessed in vitro, a series of quantum descriptors were calculated, and the electrochemical behavior of the synthesized compounds was studied to evaluate the impact on the antioxidant and antiradical activities. In addition, their antibacterial and antifungal properties were evaluated against seven aerobic bacterial strains and a strain of C. albicans, and their cytotoxicity was assessed in vitro. Compounds 5a-b, 7a-b and 8a-b presented remarkable antioxidant and antiradical properties, and compounds 5a-b, 7a and 8a displayed good Cu+2 chelating activity. Compounds 7a and 8a were very active against P. aeruginosa ATCC 27853 compared to norfloxacin, and proved less cytotoxic than ascorbic acid against the human keratinocyte cell line (HaCaT cells, CLS-300493). Several phenolic compounds from the synthesized series presented excellent antioxidant activity and notable anti-Pseudomonas potential.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6087
Author(s):  
Wirginia Kukula-Koch ◽  
Dominik Szwajgier ◽  
Katarzyna Gaweł-Bęben ◽  
Marcelina Strzępek-Gomółka ◽  
Kazimierz Głowniak ◽  
...  

This work aims to assess the recently established anti-inflammatory and antioxidant potential of melatonin of plant origin extracted from the plant matrix as a phytomelatonin complex (PHT-MLT), and compare its activity with synthetic melatonin (SNT-MLT) when used on its own or with vitamin C. For this purpose, a COX-2 enzyme inhibitory activity test, an antiradical activity in vitro and on cell lines assays, was performed on both PHT-MLT and SNT-MLT products. COX-2 inhibitory activity of PHT-MLT was found to be ca. 6.5 times stronger than that of SNT-MLT (43.3% and 6.7% enzyme inhibition, equivalent to the activity of acetylsalicylic acid in conc. 30.3 ± 0.2 and 12.0 ± 0.3 mg/mL, respectively). Higher antiradical potential and COX-2 inhibitory properties of PHT-MLT could be explained by the presence of additional naturally occurring constituents in alfalfa, chlorella, and rice, which were clearly visible on the HPLC-ESI-QTOF-MS fingerprint. The antiradical properties of PHT-MLT determined in the DPPH test (IC50 of 21.6 ± 1 mg of powder/mL) were found to originate from the presence of other metabolites in the 50% EtOH extract while SNT-MLT was found to be inactive under the applied testing conditions. However, the antioxidant studies on HaCaT keratinocytes stimulated with H2O2 revealed a noticeable activity in all samples. The presence of PHT-MLT (12.5, 25 and 50 µg/mL) and vitamin C (12.5, 25 and 50 µg/mL) in the H2O2-pretreated HaCaT keratinocytes protected the cells from generating reactive oxygen species. This observation confirms that MLT-containing samples affect the intracellular production of enzymes and neutralize the free radicals. Presented results indicated that MLT-containing products in combination with Vitamin C dosage are worth to be considered as a preventive alternative in the therapy of various diseases in the etiopathogenesis, of which radical and inflammatory mechanisms play an important role.


2021 ◽  
pp. 211-217
Author(s):  
Irina Dement'yevna Zykova ◽  
Aleksandr Alekseyevich Efremov

The antiradical properties of essential oils from the inflorescences of Filipendula ulmaria (L). Maxim, herbages Hypericum perforatum L. and Pulmonaria mollis Wulfen ex HORNEM., growing on the territory of the Krasnoyarsk territory were studied. For this purpose, the reaction of essential oil components with a stable free 2,2-diphenyl-1-picrylhydrazyl radical was used. Essential oil of the plants under study received comprehensive hydroponically. The component composition of the oils was determined by chromatography-mass spectrometry. The main components of essential oil of F. ulmaria inflorescences are methyl salicylate (28.2%), salicylic aldehyde (2.8 %) and linalool (4.9%), essential oil of H. perforatum – γ - amorphene (30.7%), δ-cadinen (7.1%), (E, E)-β-farnesene (5.5%), caryophyllene (5.0%), ledol (5.0%), essential oil of P. mollis – di-n-butyl phthalate (18.7%), docosan (13.4%), tetracosan (11.6 %). The results of the DPPH test showed that the essential oils of the inflorescences of F. ulmaria and the aboveground part of H. perforatum and P. mollis exhibit antiradical activity (ARA). According to the size of the ARA of essential oils, the studied plants can be arranged in the following row: P. mollis > F. ulmaria > H. perforatum.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shynggys Sergazy ◽  
Alexander Gulyayev ◽  
Aidana Amangeldiyeva ◽  
Ayaulym Nurgozhina ◽  
Madiyar Nurgaziyev ◽  
...  

The aim of this study is determine the in vitro and in vivo antiradical properties and the cytoprotective activity of Allium nutans L. honey extract. The antiradical properties of the extracts were investigated in rabbit alveolar macrophages and human foreskin fibroblast (hFFs) cells in the presence of doxorubicin, a cytotoxic substance using DPPH and ABTS assays. The cytoprotective activities were determined using 18 Wistar rats divided into three different groups, a negative control, and two other groups with experimentally induced hepatotoxicity by a single intraperitoneal injection of 50% carbon tetrachloride (CCl4) oil solution. A positive control group, received drinking water only and an experimental group that was treated with Allium nutans L. honey extracts for 7 days. In vitro treatment with Allium nutans L. honey extracts resulted in 78% reduction in radical activity in DPPH and 91.6% inhibition using the ABTS. Also, honey extracts were able to preserve 100% of cell viability in the presence of the cytotoxic, doxorubicin. Furthermore, the treatment with honey extracts resulted in a significant reduction in damage to the structure of liver tissue, as well significant reduction in the levels of ALT and AST in the experimental group compared to the control group.


2021 ◽  
Vol 22 (15) ◽  
pp. 8040
Author(s):  
Agnieszka Lewińska ◽  
Julita Kulbacka ◽  
Marta Domżał-Kędzia ◽  
Maciej Witwicki

Surfactants are molecules that lower surface or interfacial tension, and thus they are broadly used as detergents, wetting agents, emulsifiers, foaming agents, or dispersants. However, for modern applications, substances that can perform more than one function are desired. In this study we evaluated antioxidant properties of two homological series of N-oxide surfactants: monocephalic 3-(alkanoylamino)propyldimethylamine-N-oxides and dicephalic N,N-bis[3 ,3′-(dimethylamino)propyl]alkylamide di-N-oxides. Their antiradical properties were tested against stable radicals using electron paramagnetic resonance (EPR) and UV-vis spectroscopy. The experimental investigation was supported by theoretical density functional theory (DFT) and ab initio modeling of the X–H bonds dissociation enthalpies, ionization potentials, and Gibbs free energies for radical scavenging reactions. The evaluation was supplemented with a study of biological activity. We found that the mono- and di-N-oxides are capable of scavenging reactive radicals; however, the dicephalic surfactants are more efficient than their linear analogues.


2021 ◽  
pp. 129-135
Author(s):  
Aleksandr Alekseyevich Efremov ◽  
Irina Dement'yevna Zykova

In model reactions with a free stable 2,2-diphenyl-1-picrylhydrazyl radical, the antiradical properties of extractives of common yarrow (Achillea millefolium L.) growing in the Krasnoyarsk Territory were studied: water-alcohol extracts with an alcohol content of 20, 40 and 70% and essential oil. Whole essential oil is obtained by exhaustive hydro-steam distillation for 11 hours. In addition, separate oil fractions were obtained: the first after 20 minutes from the start of distillation, the second after the next 50 minutes, the third after the next 180 minutes, and the fourth after the next 360 minutes. The results of the DPPH test showed that ARA is minimal for alcohol-soluble substances and increases for aqueous-alcoholic extracts from 20.3% in the case of a 20% extract to 21.8% for a 70% aqueous-alcoholic extract. ARA of the obtained samples of essential oil surpasses the ARA values of aqueous, alcoholic and aqueous-alcoholic extracts. It was found that the APA value for 1 fraction of oil is 29.7% and increases with the transition to subsequent fractions to 54.3%. Whole Yarrow essential oil has an ARA value of 52.8%. According to the ARA value, the extractives of yarrow can be arranged in the following row: whole essential oils> 70% aqueous-alcoholic extract> 40% extract> 20% extract> aqueous extract> 96% alcoholic extract.


Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 112
Author(s):  
Elena Gerasimova ◽  
Elena Gazizullina ◽  
Ekaterina Radosteva ◽  
Alla Ivanova

A comprehensive study of a range of flavonoids and coumarins is presented in this article. The work uses an approach that evaluates the activity of these compounds by various mechanisms: the electron transfer (ET), the hydrogen atom transfer (HAT), and the mechanism of metal chelation. The studies were carried out using the methods of the cyclic voltammetry and the potentiometry. The electrochemical behavior of these compounds was studied by the method of cyclic voltammetry; the main types of voltammograms, depending on the oxidation mechanisms, were identified. Various versions of potentiometric sensor systems have been used to detect analytical signal in approaches implemented in ET, HAT and metal chelation mechanisms. The antioxidant capacity was studied by the electron-transfer mechanism. Compounds with antioxidant properties were selected; half-reaction periods for these compounds have been determined. It has been shown that electron-donating and complexing properties directly depend on the mutual arrangement of hydroxyl groups in the molecule. The antiradical ability of the compounds has been studied. It was shown that all studied compounds inhibit peroxyl radicals. Series on the change in antioxidant and antiradical properties of compounds have been compiled. There is no correlation between the results of the study of antioxidant properties obtained using sensory systems that reveal various antioxidant mechanisms. The need to use an integrated approach in the study of antioxidant properties is shown.


Sign in / Sign up

Export Citation Format

Share Document