tumor suppressor proteins
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 20)

H-INDEX

22
(FIVE YEARS 3)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 127
Author(s):  
Adelaide Ohui Fierti ◽  
Michael Bright Yakass ◽  
Ernest Adjei Okertchiri ◽  
Samuel Mawuli Adadey ◽  
Osbourne Quaye

Epstein-Barr virus (EBV) is ubiquitous and carried by approximately 90% of the world’s adult population. Several mechanisms and pathways have been proposed as to how EBV facilitates the pathogenesis and progression of malignancies, such as Hodgkin’s lymphoma, Burkitt’s lymphoma, nasopharyngeal carcinoma, and gastric cancers, the majority of which have been linked to viral proteins that are expressed upon infection including latent membrane proteins (LMPs) and Epstein-Barr virus nuclear antigens (EBNAs). EBV expresses microRNAs that facilitate the progression of some cancers. Mostly, EBV induces epigenetic silencing of tumor suppressor genes, degradation of tumor suppressor mRNA transcripts, post-translational modification, and inactivation of tumor suppressor proteins. This review summarizes the mechanisms by which EBV modulates different tumor suppressors at the molecular and cellular levels in associated cancers. Briefly, EBV gene products upregulate DNA methylases to induce epigenetic silencing of tumor suppressor genes via hypermethylation. MicroRNAs expressed by EBV are also involved in the direct targeting of tumor suppressor genes for degradation, and other EBV gene products directly bind to tumor suppressor proteins to inactivate them. All these processes result in downregulation and impaired function of tumor suppressors, ultimately promoting malignances.


2021 ◽  
pp. candisc.1726.2020
Author(s):  
Qing Li ◽  
Baishan Jiang ◽  
Jiaye Guo ◽  
Hong Shao ◽  
Isabella S. Del Priore ◽  
...  

Author(s):  
Darja Kanduc

Abstract Background and Objectives Whether exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may predispose to the risk of cancer in individuals with no prior cancers is a crucial question that remains unclear. To confirm/refute possible relationships between exposure to the virus and ex novo insurgence of tumors, this study analyzed molecular mimicry and the related cross-reactive potential between SARS-CoV-2 spike glycoprotein (gp) antigen and human tumor-suppressor proteins. Materials and Methods Tumor-associated proteins were retrieved from UniProt database and analyzed for pentapeptide sharing with SARS-CoV-2 spike gp by using publicly available databases. Results An impressively high level of molecular mimicry exists between SARS-CoV-2 spike gp and tumor-associated proteins. Numerically, 294 tumor-suppressor proteins share 308 pentapeptides with the viral antigen. Crucially, the shared peptides have a relevant immunologic potential by repeatedly occurring in experimentally validated epitopes. Such immunologic potential is of further relevancy in that most of the shared peptides are also present in infectious pathogens to which, in general, human population has already been exposed, thus indicating the possibility of immunologic imprint phenomena. Conclusion This article described a vast peptide overlap between SARS-CoV-2 spike gp and tumor-suppressor proteins, and supports autoimmune cross-reactivity as a potential mechanism underlying prospective cancer insurgence following exposure to SARS-CoV-2. Clinically, the findings call for close surveillance of tumor sequelae that possibly could result from the current coronavirus pandemic.


2021 ◽  
Vol 42 (04) ◽  
pp. 360-363
Author(s):  
Hridya Jayamohanan ◽  
Vaibhav Venniyoor ◽  
Keechilat Pavithran

AbstractSelinexor developed by Karyopharm Therapeutics is the first orally available small-molecule inhibitor of exportin-1 (XPO1). XPO-1 is a protein transporter responsible for the export of macromolecules such as tumor suppressor proteins and oncoprotein mRNAs from the nucleus to the cytoplasm; its inhibition results in blocking of multiple oncogenic pathways. Overexpression of XPO1 is seen in multiple myeloma and various other malignancies and is a poor prognostic marker. Pivotal positive trials have resulted in the approval of selinexor for use in refractory or relapsed diffuse large B cell lymphoma and multiple myeloma. In this review, we briefly cover the drug development, mechanism of action, indications, and toxicities of the drug, and the major pivotal trials.


Author(s):  
Ying-Qi Song ◽  
Chun Wu ◽  
Ke-Jia Wu ◽  
Quan-Bin Han ◽  
Xiang-Min Miao ◽  
...  

The ubiquitin-proteasome system oversees cellular protein degradation in order to regulate various critical processes, such as cell cycle control and DNA repair. Ubiquitination can serve as a marker for mutation, chemical damage, transcriptional or translational errors, and heat-induced denaturation. However, aberrant ubiquitination and degradation of tumor suppressor proteins may result in the growth and metastasis of cancer. Hence, targeting the ubiquitination cascade reaction has become a potential strategy for treating malignant diseases. Meanwhile, computer-aided methods have become widely accepted as fast and efficient techniques for early stage drug discovery. This review summarizes ubiquitination regulators that have been discovered via virtual screening and their applications for cancer treatment.


2021 ◽  
Vol 31 (3) ◽  
pp. 264-267
Author(s):  
Dimitri G. Trembath ◽  
Anastasia Ivanova ◽  
Michal T. Krauze ◽  
John M. Kirkwood ◽  
Nana Nikolaishvilli-Feinberg ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sock Hoai Chan ◽  
Jianbang Chiang ◽  
Joanne Ngeow

AbstractAlthough CDKN2A is well-known as a susceptibility gene for melanoma and pancreatic cancer, germline variants have also been anecdotally associated with a broader range of neoplasms including neural system tumors, head and neck squamous cell carcinomas, breast carcinomas, as well as sarcomas. The CDKN2A gene encodes for two distinct tumor suppressor proteins, p16INK4A and p14ARF, however, the independent association of germline alterations affecting these two proteins with cancer is under-appreciated. Here, we reviewed CDKN2A germline alterations reported among individuals and families with cancer in the literature, specifically addressing the cancer phenotypes in relation to the molecular consequence on p16INK4A and p14ARF. While melanoma is observed to associate with variants affecting both p16INK4A and p14ARF transcripts, it is noted that variants affecting p14ARF are more frequently observed with a heterogenous range of cancers. Finally, we reflected on the implications of this inferred genotype-phenotype association in clinical practice and proposed that clinical management of CDKN2A germline variant carriers should involve dedicated cancer genetics services, with multidisciplinary input from various healthcare professionals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amber M. D’Souza ◽  
Ashley Cast ◽  
Meenasri Kumbaji ◽  
Maria Rivas ◽  
Ruhi Gulati ◽  
...  

Objective: Relapsed hepatoblastoma (HBL) and upfront hepatocellular carcinoma (HCC) are notoriously chemoresistant tumors associated with poor outcomes. Gankyrin (Gank) is a known oncogene that is overexpressed in pediatric liver cancer and implicated in chemo-resistance. The goal of this study was to evaluate if the Gank-tumor suppressor axis is activated in chemoresistant hepatoblastoma patients and examine if an inhibitor of Gank, Cjoc42, might improve the chemosensitivity of cancer cells.Methods: Expression of Gank and its downstream targets were examined in fresh human HBL samples using immunostaining, QRT-PCR, and Western Blot. Cancer cells, Huh6 (human HBL) and Hepa1c1c7 (mouse HCC) were treated with Cjoc42 and with Cjoc42 in combination with cisplatin or doxorubicin. Cell proliferation, apoptosis, and chemoresistance were examined. To examine activities of Cjoc42 in vivo, mice were treated with different doses of Cjoc42, and biological activities of Gank and cytotoxicity of Cjoc42 were tested.Results: Elevation of Gank and Gank-mediated elimination of TSPs are observed in patients with minimal necrosis after chemotherapy and relapsed disease. The treatment of Huh6 and Hepa1c1c7 with Cjoc42 was not cytotoxic; however, in combination with cisplatin or doxorubicin, Cjoc42 caused a significant increase in cytotoxicity compared to chemotherapy alone with increased apoptosis. Examination of Cjoc42 in WT mice showed that Cjoc42 is well tolerated without systemic toxicity, and levels of tumor suppressors CUGBP1, Rb, p53, C/EBPα, and HNF4α are increased by blocking their Gank-dependent degradation.Conclusions: Our work shows that Cjoc42 might be a promising adjunct to chemotherapy for the treatment of severe pediatric liver cancer and presents mechanisms by which Cjoc42 increases chemo-sensitivity.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Amit Kumar Verma ◽  
Prahalad Singh Bharti ◽  
Sahar Rafat ◽  
Deepti Bhatt ◽  
Yamini Goyal ◽  
...  

Autophagy, a catabolic process, degrades damaged and defective cellular materials through lysosomes, thus working as a recycling mechanism of the cell. It is an evolutionarily conserved and highly regulated process that plays an important role in maintaining cellular homeostasis. Autophagy is constitutively active at the basal level; however, it gets enhanced to meet cellular needs in various stress conditions. The process involves various autophagy-related genes that ultimately lead to the degradation of targeted cytosolic substrates. Many factors modulate both upstream and downstream autophagy pathways like nutritional status, energy level, growth factors, hypoxic conditions, and localization of p53. Any problem in executing autophagy can lead to various pathological conditions including neurodegeneration, aging, and cancer. In cancer, autophagy plays a contradictory role; it inhibits the formation of tumors, whereas, during advanced stages, autophagy promotes tumor progression. Besides, autophagy protects the tumor from various therapies by providing recycled nutrition and energy to the tumor cells. Autophagy is stimulated by tumor suppressor proteins, whereas it gets inhibited by oncogenes. Due to its dynamic and dual role in the pathogenesis of cancer, autophagy provides promising opportunities in developing novel and effective cancer therapies along with managing chemoresistant cancers. In this article, we summarize different strategies that can modulate autophagy in cancer to overcome the major obstacle, i.e., resistance developed in cancer to anticancer therapies.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 367
Author(s):  
Mourad Zerfaoui ◽  
Titilope Modupe Dokunmu ◽  
Eman Ali Toraih ◽  
Bashir M. Rezk ◽  
Zakaria Y. Abd Elmageed ◽  
...  

Cancer remains a major public health concern, mainly because of the incompletely understood dynamics of molecular mechanisms for progression and resistance to treatments. The link between melanoma and thyroid cancer (TC) has been noted in numerous patients. Nucleocytoplasmic transport of oncogenes and tumor suppressor proteins is a common mechanism in melanoma and TC that promotes tumorigenesis and tumor aggressiveness. However, this mechanism remains poorly understood. Papillary TC (PTC) patients have a 1.8-fold higher risk for developing cutaneous malignant melanoma than healthy patients. Our group and others showed that patients with melanoma have a 2.15 to 2.3-fold increased risk of being diagnosed with PTC. The BRAF V600E mutation has been reported as a biological marker for aggressiveness and a potential genetic link between malignant melanoma and TC. The main mechanistic factor in the connection between these two cancer types is the alteration of the RAS-RAF-MEK-ERK signaling pathway activation and translocation. The mechanisms of nucleocytoplasmic trafficking associated with RAS, RAF, and Wnt signaling pathways in melanoma and TC are reviewed. In addition, we discuss the roles of tumor suppressor proteins such as p53, p27, forkhead O transcription factors (FOXO), and NF-KB within the nuclear and cytoplasmic cellular compartments and their association with tumor aggressiveness. A meticulous English-language literature analysis was performed using the PubMed Central database. Search parameters included articles published up to 2021 with keyword search terms melanoma and thyroid cancer, BRAF mutation, and nucleocytoplasmic transport in cancer.


Sign in / Sign up

Export Citation Format

Share Document