Porphyrins are valuable constituents in optoelectronic, catalytic, and other applications, yet control of intermolecular π–π stacking is invariably essential to attain the desired properties. Superstructures built onto the porphyrin, often via meso-aryl groups, can afford facial encumbrance that suppresses π–π stacking, although some molecular designs have provided insufficient facial coverage and many have entailed cumbersome syntheses. In this study, a copper(II) porphyrin bearing four meso substituents, namely, {10,20-bis[2,6-bis(octyloxy)phenyl]-5,15-dibromoporphinato}copper(II), [Cu(C64H82Br2N4O4)], was prepared by metalation of the corresponding free-base porphyrin and was characterized by single-crystal X-ray diffraction. The crystal structure reveals a dihedral angle of 111.1 (2)° for the plane of the meso-aryl group relative to the plane of the porphyrin, with both aryl groups tilted in the same direction. Each of the four octyloxy groups exhibits a gauche conformation for the –OCH2CH2– unit but is extended with four or five anti (–CH2CH2–/H) conformations thereafter, causing each octyl group to span the dimension of the macrocycle. In a global frame of reference where the two Br atoms define the north/south poles and the two aryl groups are at antipodes on the equator, two octyl groups of one aryl unit project over the northern hemisphere (covering pyrroles A and B), whereas those of the other aryl unit project over the southern hemisphere (covering pyrroles C and D). Together, the four octyl groups ensheath the two faces of the porphyrin in a self-wrapped assembly. The closest approach of the Cu atom to an octyl methylene C atom (position 6) is 3.5817 (18) Å, the mean separations of neighboring porphyrin planes are 8.059 (4) and 4.693 (8) Å along the a and c axes, respectively, and the center-to-center distances between the Cu atoms of neighboring porphyrins are 10.2725 (4), 12.2540 (6), and 12.7472 (6) Å along the a, b, and c axes, respectively. The Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots provide information concerning contact interactions in the supramolecular assembly of the solid crystal.