equivalent characterization
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 20)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Zongyang Xie ◽  
Zhongkui Liu ◽  
Xiaoyan Yang

Let [Formula: see text] be a commutative artinian ring and [Formula: see text] a small Ext-finite Krull–Schmidt [Formula: see text]-abelian [Formula: see text]-category with enough projectives and injectives. We introduce two full subcategories [Formula: see text] and [Formula: see text] of [Formula: see text] in terms of the representable functors from the stable category of [Formula: see text] to category of finitely generated [Formula: see text]-modules. Moreover, we define two additive functors [Formula: see text] and [Formula: see text], which are mutually quasi-inverse equivalences between the stable categories of this two full subcategories. We give an equivalent characterization on the existence of [Formula: see text]-Auslander–Reiten sequences using determined morphisms.


2021 ◽  
Vol 36 (3) ◽  
pp. 462-474
Author(s):  
Xiao Liu ◽  
Tao Jiang ◽  
Hao-hao Li

AbstractIn this paper, weak optimal inverse problems of interval linear programming (IvLP) are studied based on KKT conditions. Firstly, the problem is precisely defined. Specifically, by adjusting the minimum change of the current cost coefficient, a given weak solution can become optimal. Then, an equivalent characterization of weak optimal inverse IvLP problems is obtained. Finally, the problem is simplified without adjusting the cost coefficient of null variable.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Cong He ◽  
Jingchun Chen

In this paper, we give an equivalent characterization of the Besov space. This reveals the equivalent relation between the mixed derivative norm and single-variable norm. Fourier multiplier, real interpolation, and Littlewood-Paley decomposition are applied.


2021 ◽  
pp. 1-14
Author(s):  
WEIQING CAO ◽  
JIAQUN WEI

Abstract We introduce and study the notion of Gorenstein silting complexes, which is a generalization of Gorenstein tilting modules in Gorenstein-derived categories. We give the equivalent characterization of Gorenstein silting complexes. We give a sufficient condition for a partial Gorenstein silting complex to have a complement.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 116
Author(s):  
Qi Liu ◽  
Yongjin Li

In this paper, we will introduce a new geometric constant LYJ(λ,μ,X) based on an equivalent characterization of inner product space, which was proposed by Moslehian and Rassias. We first discuss some equivalent forms of the proposed constant. Next, a characterization of uniformly non-square is given. Moreover, some sufficient conditions which imply weak normal structure are presented. Finally, we obtain some relationship between the other well-known geometric constants and LYJ(λ,μ,X). Also, this new coefficient is computed for X being concrete space.


2021 ◽  
pp. 2150004
Author(s):  
Ming-Liang Chen ◽  
Zhi-Hui Yan

In this paper, we study the spectral property of the self-affine measure [Formula: see text] generated by an expanding real matrix [Formula: see text] and the four-element digit set [Formula: see text]. We show that [Formula: see text] is a spectral measure, i.e. there exists a discrete set [Formula: see text] such that the collection of exponential functions [Formula: see text] forms an orthonormal basis for [Formula: see text], if and only if [Formula: see text] for some [Formula: see text]. A similar characterization for Bernoulli convolution is provided by Dai [X.-R. Dai, When does a Bernoulli convolution admit a spectrum? Adv. Math. 231(3) (2012) 1681–1693], over which [Formula: see text]. Furthermore, we provide an equivalent characterization for the maximal bi-zero set of [Formula: see text] by extending the concept of tree-mapping in [X.-R. Dai, X.-G. He and C. K. Lai, Spectral property of Cantor measures with consecutive digits, Adv. Math. 242 (2013) 187–208]. We also extend these results to the more general self-affine measures.


2021 ◽  
Vol 40 (1) ◽  
pp. 1277-1285
Author(s):  
Zhen-yu Jin ◽  
Cong-hua Yan

Motivated by the concept of lattice-bornological vector spaces of J. Paseka, S. Solovyov and M. Stehlík, which extends bornological vector spaces to the fuzzy setting over a complete lattice, this paper continues to study the theory of L-bornological vector spaces. The specific description of L-bornological vector spaces is presented, some properties of Lowen functors between the category of bornological vector spaces and the category of L-bornological vector spaces are discussed. In addition, the notions and some properties of L-Mackey convergence and separation in L-bornological vector spaces are showed. The equivalent characterization of separation in L-bornological vector spaces in terms of L-Mackey convergence is obtained in particular.


2021 ◽  
Vol 109 (123) ◽  
pp. 77-82
Author(s):  
Péter Kevei

We prove that h?(x) = ??x0 y??1F?(y)dy is regularly varying with index ? [0, ?) if and only if V?(x) = ?[0,x] y?dF(y) is regularly varying with the same index, where ? > 0, F(x) is a distribution function of a nonnegative random variable, and F?(x) = 1?F(x). This contains at ? = 0, ?= 1 a result of Rogozin [8] on relative stability, and at ? = 0, ? = 2 a new, equivalent characterization of the domain of attraction of the normal law. For ? = 0 and ? > 0 our result implies a recent conjecture by Seneta [9].


10.37236/9519 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Yi-Zheng Fan ◽  
Yi Wang ◽  
Jiang-Chao Wan

Among all uniform hypergraphs with even uniformity, the odd-transversal or odd-bipartite hypergraphs are closer to bipartite simple graphs than bipartite hypergraphs from the viewpoint of both structure and spectrum. A hypergraph is called odd-transversal if it contains a subset of the vertex set such that each edge intersects the subset in an odd number of vertices, and it is called minimal non-odd-transversal if it is not odd-transversal but deleting any edge results in an odd-transversal hypergraph. In this paper we give an equivalent characterization of the minimal non-odd-transversal hypergraphs by means of the degrees and the rank of its incidence matrix over $\mathbb{Z}_2$. If a minimal non-odd-transversal hypergraph is uniform, then it has even uniformity, and hence is minimal non-odd-bipartite. We characterize $2$-regular uniform  minimal non-odd-bipartite hypergraphs, and give some examples of $d$-regular uniform hypergraphs which are minimal non-odd-bipartite. Finally we give upper bounds for the least H-eigenvalue of the adjacency tensor of minimal non-odd-bipartite hypergraphs.


Sign in / Sign up

Export Citation Format

Share Document