isolation methods
Recently Published Documents


TOTAL DOCUMENTS

490
(FIVE YEARS 157)

H-INDEX

38
(FIVE YEARS 7)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 583
Author(s):  
Wenbin Gong ◽  
An Li ◽  
Chunfu Huang ◽  
Hao Che ◽  
Chengxu Feng ◽  
...  

An atomic interference gravimeter (AIG) is of great value in underwater aided navigation, but one of the constraints on its accuracy is vibration noise. For this reason, technology must be developed for its vibration isolation. Up to now, three methods have mainly been employed to suppress the vibration noise of an AIG, including passive vibration isolation, active vibration isolation and vibration compensation. This paper presents a study on how vibration noise affects the measurement of an AIG, a review of the research findings regarding the reduction of its vibration, and the prospective development of vibration isolation technology for an AIG. Along with the development of small and movable AIGs, vibration isolation technology will be better adapted to the challenging environment and be strongly resistant to disturbance in the future.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Marina Segura-Benítez ◽  
María Cristina Carbajo-García ◽  
Ana Corachán ◽  
Amparo Faus ◽  
Antonio Pellicer ◽  
...  

Abstract Background Successful implantation is dependent on coordination between maternal endometrium and embryo, and the role of EVs in the required cross-talk cell-to-cell has been recently established. In this regard, it has been reported that EVs secreted by the maternal endometrium can be internalized by human trophoblastic cells transferring their contents and enhancing their adhesive and invasive capacity. This is the first study to comprehensively evaluate three EV isolation methods on human endometrial epithelial cells in culture and to describe the proteomic content of EVs secreted by pHEECs from fertile women. Methods Ishikawa cells and pHEECs were in vitro cultured and hormonally treated; subsequently, conditioned medium was collected and EVs isolated. Ishikawa cells were used for the comparison of EVs isolation methods ultracentrifugation, ExoQuick-TC and Norgen Cell Culture Media Exosome Purification Kit (n = 3 replicates/isolation method). pHEECs were isolated from endometrial biopsies (n = 8/replicate; 3 replicates) collected from healthy oocyte donors with confirmed fertility, and protein content of EVs isolated by the most efficient methodology was analysed using liquid chromatography–tandem mass spectrometry. EV concentration and size were analyzed by nanoparticle tracking analysis, EV morphology visualized by transmission electron microscopy and protein marker expression was determined by Western blotting. Results Ultracentrifugation was the most efficient methodology for EV isolation from medium of endometrial epithelial cells. EVs secreted by pHEECs and isolated by ultracentrifugation were heterogeneous in size and expressed EV protein markers HSP70, TSG101, CD9, and CD81. Proteomic analysis identified 218 proteins contained in these EVs enriched in biological processes involved in embryo implantation, including cell adhesion, differentiation, communication, migration, extracellular matrix organization, vasculature development, and reproductive processes. From these proteins, 82 were selected based on their functional relevance in implantation success as possible implantation biomarkers. Conclusions EV protein cargos are implicated in biological processes related to endometrial receptivity, embryo implantation, and early embryo development, supporting the concept of a communication system between the embryo and the maternal endometrium via EVs. Identified proteins may define new biomarkers of endometrial receptivity and implantation success.


2022 ◽  
pp. 267-289
Author(s):  
Janki Ruparelia ◽  
Aniruddh Rabari ◽  
Nishra Joshi ◽  
Chaitanya Kumar Jha

2021 ◽  
Author(s):  
Darius Sargautis ◽  
◽  
Tatjana Kince ◽  
Vanda Sargautiene ◽  

Oat protein itself, as a substance, has extensively been studied providing information on its nutritional value, some functional properties and possible applicability in food systems. Chosen protein isolation methods and technological aspects define final composition of obtained oat protein product, its concentration, nutrition value and its functionality in food industry. Scientific data on oat protein recovery methods, typically relying on protein solubility or dry fractionation, provides an insufficient knowledge about the success in commercialization of oat protein recovery technologies and their derivatives in form of oat protein. The aim of the study was to analyse and summarize the research findings on oat protein extraction methods and functional properties of oat protein. Semi-systematic, monographic methods were used to analyse the oat protein isolation techniques, functional properties of oat protein in aqueous food systems, covering the latest information on oat protein extraction methods. Wet and dry isolation methods were demonstrated as main methods in oat protein extraction. Functional properties of oat protein, such as thermal stability, solubility, emulsification, water hydration capacity and foaming were reviewed and evaluated, identifying limitations and protein alterations which occur through the oat protein extraction process. The study provides recent trends in oat protein recovery technologies, along with an overview of current and potential oat protein utilization in food systems.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3287
Author(s):  
Anika Kotyrba ◽  
Mehmet Dinc ◽  
Boris Mizaikoff

Protein imprinted MIPs show notable potential for applications in many analytical areas such as clinical analysis, medical diagnostics and environmental monitoring, but also in drug delivery scenarios. In this study, we present various modifications of two different synthesis routes to create imprinted core-shell particles serving as a synthetic recognition material for the protein hen egg white (HEW) lysozyme. HEW lysozyme is used as food additive E 1105 for preservation due to its antibacterial effects. For facilitating quality and regulatory control analysis in food matrices, it is necessary to apply suitable isolation methods as potentially provided by molecularly imprinted materials. The highest binding capacity achieved herein was 58.82 mg/g with imprinting factors ranging up to 2.74, rendering these materials exceptionally suitable for selectively isolating HEW lysozyme.


2021 ◽  
Vol 9 (11) ◽  
pp. 111-115
Author(s):  
Shradha Suman ◽  
◽  
Prakash Lokhande ◽  
Dhanyakumar N.M ◽  
Siddheswaran V. ◽  
...  

Context: A proper isolation technique plays a key role in the success of restoration of carious tooth. Aim Of The Study: The aim of this in-vivo study was to evaluate efficacy of addition silicone dam coverage technique with conventional isolation methods in restorative procedures and endodontic treatment. Settings And Design: Forty-Five patients who fulfill the inclusion criteria were selected for the study. Materials And Methods: All the participants underwent clinical procedures using 3 different isolation techniques. Group-1: Clinical procedures were carried out using traditional cotton roll isolation. Group-2: Clinical procedures were carried out using conventional rubber dam isolation procedure. Group-3: Clinical procedures were carried out using addition silicone dam coverage technique. The efficacy of isolation in terms of clinician usage and patient comfort is evaluated by a single evaluator. The results were tabulated and statistically analyzed. Statistical Analysis: IBM SPSS (version 21.0) software was used. Chi-square test was performed, considering P < 0.05 for statistical significance. Results: All the groups demonstrated satisfactory clinical performance. Upon inter and intra-group comparison of the isolation methods, there was statistically significant difference (P > 0.05). Conclusion: It is important to achieve an aseptic environment in clinical restorative and endodontic procedures. Addition silicone dam coverage technique is a chair side modified design which is user friendly with improved treatment efficacy. However, long-term clinical studies must be needed for further evaluation.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7175
Author(s):  
Dikdik Kurnia ◽  
Dwipa Ajiati ◽  
Leny Heliawati ◽  
Dadan Sumiarsa

Allium is a genus that is widely consumed and used as traditional medicine in several countries. This genus has two major species, namely cultivated species and wild species. Cultivated species consist of A. cepa L., A. sativum L., A. fistulosum L. and A. schoenoprasum L. and wild species consist of A. ursinum L., A. flavum L., A. scorodoprasum L., A. vineale L. and A. atroviolaceum Boiss. Several studies report that the Allium species contain secondary metabolites such as polyphenols, flavonoids and tannins and have bioactivity such as antioxidants, antibacterial, antifungal, anti-inflammatory, pancreatic α-amylase, glucoamylase enzyme inhibitors and antiplatelets. This review summarizes some information regarding the types of Allium species (ethnobotany and ethnopharmacology), the content of compounds of Allium species leaves with various isolation methods, bioactivities, antioxidant properties and the structure-antioxidant activity relationship (SAR) of Allium compounds.


2021 ◽  
Vol 13 ◽  
Author(s):  
Rodrigo Diaz-Espinoza

Amyloids are highly ordered aggregates composed of proteins or peptides. They are involved in several pathologies, including hallmark neurodegenerative disorders such as Alzheimer’s (AD) and Parkinson’s (PD). Individuals affected by these diseases accumulate in their brains amyloids inclusions composed of misfolded forms of a peptide (Aβ) and a protein (Tau) in AD and α-synuclein protein (α-Sn) in PD. Tau and α-Sn aggregates are also present in other neurodegenerative diseases. The insoluble nature and heterogeneity of amyloids have hampered their study at the molecular level. However, the use of solid state NMR and Cryogenic-electron microscopy along with fine-tuned modulation of the aggregation in vitro and improved isolation methods of brain-derived amyloids has allowed the elucidation of these elusive conformations at high resolution. In this work, we review the latest progress on the recent amyloid structures reported for Aβ, Tau, and α-Sn. The two-fold symmetry emerges as a convergent feature in the tridimensional arrangement of the protofilaments in the fibrillary structure of these pathological amyloids, with many of them exhibiting a Greek-key topology as part of their overall architecture. These specific features can serve as novel guides to seek potential molecular targets in drug design efforts.


Sign in / Sign up

Export Citation Format

Share Document