contractile parameters
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
pp. 174339
Author(s):  
Daniel Maia Nogueira de Oliveira ◽  
Carlos Alberto Oliveira Silva ◽  
Camila Gadelha Pinheiro ◽  
Emanuella Feitosa de Carvalho ◽  
Kalinne Kelly Lima Gadelha ◽  
...  

2021 ◽  
Vol 9 (9) ◽  
Author(s):  
Phuong L. Ha ◽  
Benjamin E. Dalton ◽  
Michaela G. Alesi ◽  
Tyler M. Smith ◽  
Trisha A. VanDusseldorp ◽  
...  

Author(s):  
Joachim Neumann ◽  
Maximilian Benedikt Binter ◽  
Charlotte Fehse ◽  
Margaréta Marušáková ◽  
Maren Luise Büxel ◽  
...  

AbstractWe have previously shown that histamine (2-(1H-imidazol-4-yl)ethanamine) exerted concentration-dependent positive inotropic effects (PIE) or positive chronotropic effects (PCE) on isolated left and right atria, respectively, of transgenic (H2R-TG) mice that overexpress the human H2 histamine receptor (H2R) in the heart; however, the effects were not seen in their wild-type (WT) littermates. Amitriptyline, which is still a highly prescribed antidepressant drug, was reported to act as antagonist on H2Rs. Here, we wanted to determine whether the histamine effects in H2R-TG were antagonized by amitriptyline. Contractile studies were performed on isolated left and right atrial preparations, isolated perfused hearts from H2R-TG and WT mice and human atrial preparations. Amitriptyline shifted the concentration-dependent PIE of histamine (1 nM–10 μM) to higher concentrations (rightward shift) in left atrial preparations from H2R-TG. Similarly, in isolated perfused hearts from H2R-TG and WT mice, histamine increased the contractile parameters and the phosphorylation state of phospholamban (PLB) at serine 16 in the H2R-TG mice, but not in the WT mice. However, the increases in contractility and PLB phosphorylation were attenuated by the addition of amitriptyline in perfused hearts from H2R-TG. In isolated electrically stimulated human atria, the PIE of histamine that was applied in increasing concentrations from 1 nM to 10 μM was reduced by 10-μM amitriptyline. In summary, we present functional evidence that amitriptyline also acts as an antagonist of contractility at H2Rs in H2R-TG mouse hearts and in the human heart which might in part explain the side effects of amitriptyline.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3616 ◽  
Author(s):  
Ibrahim AlMohimeed ◽  
Yuu Ono

Skeletal muscle is considered as a near-constant volume system, and the contractions of the muscle are related to the changes in tissue thickness. Assessment of the skeletal muscle contractile parameters such as maximum contraction thickness ( T h ), contraction time ( T c ), contraction velocity ( V c ), sustain time ( T s ), and half-relaxation ( T r ) provides valuable information for various medical applications. This paper presents a single-element wearable ultrasonic sensor (WUS) and a method to measure the skeletal muscle contractile parameters in A-mode ultrasonic data acquisition. The developed WUS was made of double-layer polyvinylidene fluoride (PVDF) piezoelectric polymer films with a simple and low-cost fabrication process. A flexible, lightweight, thin, and small size WUS would provide a secure attachment to the skin surface without affecting the muscle contraction dynamics of interest. The developed WUS was employed to monitor the contractions of gastrocnemius (GC) muscle of a human subject. The GC muscle contractions were evoked by the electrical muscle stimulation (EMS) at varying EMS frequencies from 2 Hz up to 30 Hz. The tissue thickness changes due to the muscle contractions were measured by utilizing a time-of-flight method in the ultrasonic through-transmission mode. The developed WUS demonstrated the capability to monitor the tissue thickness changes during the unfused and fused tetanic contractions. The tetanic progression level was quantitatively assessed using the parameter of the fusion index (FI) obtained. In addition, the contractile parameters ( T h , T c , V c , T s , and T r ) were successfully extracted from the measured tissue thickness changes. In addition, the unfused and fused tetanus frequencies were estimated from the obtained FI-EMS frequency curve. The WUS and ultrasonic method proposed in this study could be a valuable tool for inexpensive, non-invasive, and continuous monitoring of the skeletal muscle contractile properties.


2020 ◽  
Vol 6 (14) ◽  
pp. eaax0069 ◽  
Author(s):  
Saswata S. Sarkar ◽  
Darshan V. Trivedi ◽  
Makenna M. Morck ◽  
Arjun S. Adhikari ◽  
Shaik N. Pasha ◽  
...  

Hypertrophic cardiomyopathy (HCM) mutations in β-cardiac myosin and myosin binding protein-C (MyBP-C) lead to hypercontractility of the heart, an early hallmark of HCM. We show that hypercontractility caused by the HCM-causing mutation R663H cannot be explained by changes in fundamental myosin contractile parameters, much like the HCM-causing mutation R403Q. Using enzymatic assays with purified human β-cardiac myosin, we provide evidence that both mutations cause hypercontractility by increasing the number of functionally accessible myosin heads. We also demonstrate that the myosin mutation R403Q, but not R663H, ablates the binding of myosin with the C0-C7 fragment of MyBP-C. Furthermore, addition of C0-C7 decreases the wild-type myosin basal ATPase single turnover rate, while the mutants do not show a similar reduction. These data suggest that a primary mechanism of action for these mutations is to increase the number of myosin heads functionally available for interaction with actin, which could contribute to hypercontractility.


2020 ◽  
Vol 318 (1) ◽  
pp. H25-H33
Author(s):  
Bryan Gellner ◽  
Liming Xin ◽  
Roberto Vanin Pinto Ribeiro ◽  
Ved Bissoondath ◽  
Mitchell B. Adamson ◽  
...  

Ex situ heart perfusion (ex situ heart perfusion) is an emerging technique that aims to increase the number of organs available for transplantation by augmenting both donor heart preservation and evaluation. Traditionally, ex situ heart perfusion has been performed in an unloaded Langendorff mode, though more recently groups have begun to use pump-supported working mode (PSWM) and passive afterload working mode (PAWM) to enable contractile evaluation during ex situ heart perfusion. To this point, however, neither the predictive effectiveness of the two working modes nor the predictive power of individual contractile parameters has been analyzed. In this article, we use our previously described system to analyze the predictive relevance of a multitude of contractile parameters measured in each working mode. Ten porcine hearts were excised and perfused ex situ in Langendorff mode for 4 h, evaluated using pressure-volume catheterization in both PSWM and PAWM, and transplanted into size-matched recipient pigs. After 3 h, hearts were weaned from cardiopulmonary bypass and evaluated. When correlating posttransplant measurements to their ex situ counterparts, we report that parameters measured in both modes show sufficient power (Spearman rank coefficient > 0.7) in predicting global posttransplant function, characterized by cardiac index and preload recruitable stroke work. For the prediction of specific posttransplant systolic and diastolic function, however, a large discrepancy between the two working modes was observed. With 9 of 10 measured posttransplant parameters showing stronger correlation with counterparts measured in PAWM, it is concluded that PAWM allows for a more detailed and nuanced prediction of posttransplant function than can be made in PSWM. NEW & NOTEWORTHY Ex situ heart perfusion has been proposed as a means to augment the organ donor pool by improving organ preservation and evaluation between donation and transplantation. Using our multimodal perfusion system, we analyzed the impact of using a “passive afterload working mode” for functional evaluation as compared with the more traditional “pump-supported working mode.” Our data suggests that passive afterload working mode allows for a more nuanced prediction of posttransplant function in porcine hearts.


2019 ◽  
Vol 51 (Supplement) ◽  
pp. 39
Author(s):  
Phuong L. Ha ◽  
Alex A. Olmos ◽  
Matthew T. Stratton ◽  
Alyssa R. Bailly ◽  
Micah J. Poisal ◽  
...  

2019 ◽  
Vol 151 (5) ◽  
pp. 635-644 ◽  
Author(s):  
Sherif M. Reda ◽  
Sampath K. Gollapudi ◽  
Murali Chandra

Shifts in myosin heavy chain (MHC) isoforms in cardiac myocytes have been shown to alter cardiac muscle function not only in healthy developing hearts but also in diseased hearts. In guinea pig hearts, there is a large age-dependent shift in MHC isoforms from 80% α-MHC/20% β-MHC at 3 wk to 14% α-MHC/86% β-MHC at 11 wk. Because kinetic differences in α- and β-MHC cross-bridges (XBs) are known to impart different cooperative effects on thin filaments, we hypothesize here that differences in α- and β-MHC expression in guinea pig cardiac muscle impact sarcomere length (SL)–dependent contractile function. We therefore measure steady state and dynamic contractile parameters in detergent-skinned cardiac muscle preparations isolated from the left ventricles of young (3 wk old) or adult (11 wk old) guinea pigs at two different SLs: short (1.9 µm) and long (2.3 µm). Our data show that SL-dependent effects on contractile parameters are augmented in adult guinea pig cardiac muscle preparations. Notably, the SL-mediated increase in myofilament Ca2+ sensitivity (ΔpCa50) is twofold greater in adult guinea pig muscle preparations (ΔpCa50 being 0.11 units in adult preparations but only 0.05 units in young preparations). Furthermore, adult guinea pig cardiac muscle preparations display greater SL-dependent changes than young muscle preparations in (1) the magnitude of length-mediated increase in the recruitment of new force-bearing XBs, (2) XB detachment rate, (3) XB strain-mediated effects on other force-bearing XBs, and (4) the rate constant of force redevelopment. Our findings suggest that increased β-MHC expression enhances length-dependent activation in the adult guinea pig cardiac myocardium.


2017 ◽  
Vol 312 (1) ◽  
pp. H141-H149 ◽  
Author(s):  
Alexis V. Mickelson ◽  
Sampath K. Gollapudi ◽  
Murali Chandra

The present study investigated the functional consequences of the human hypertrophic cardiomyopathy (HCM) mutation A28V in cardiac troponin T (TnT). The A28V mutation is located within the NH2 terminus of TnT, a region known to be important for full activation of cardiac thin filaments. The functional consequences of the A28V mutation in TnT remain unknown. Given how α- and β-myosin heavy chain (MHC) isoforms differently alter the functional effect of the NH2 terminus of TnT, we hypothesized that the A28V-induced effects would be differently modulated by α- and β-MHC isoforms. Recombinant wild-type mouse TnT (TnTWT) and the mouse equivalent of the human A28V mutation (TnTA30V) were reconstituted into detergent-skinned cardiac muscle fibers extracted from normal (α-MHC) and transgenic (β-MHC) mice. Dynamic and steady-state contractile parameters were measured in reconstituted muscle fibers. Step-like length perturbation experiments demonstrated that TnTA30V decreased the magnitude of the muscle length-mediated recruitment of new force-bearing cross bridges ( ER) by 30% in α-MHC fibers. In sharp contrast, TnTA30V increased ER by 55% in β-MHC fibers. Inferences drawn from other dynamic contractile parameters suggest that directional changes in ER in TnTA30V + α-MHC and TnTA30V + β-MHC fibers result from a divergent impact on cross bridge-regulatory unit (troponin-tropomyosin complex) cooperativity. TnTA30V-mediated effects on Ca2+-activated maximal tension and instantaneous muscle fiber stiffness ( ED) were also divergently affected by α- and β-MHC. Our study demonstrates that TnTA30V + α-MHC and TnTA30V + β-MHC fibers show contrasting contractile phenotypes; however, only the observations from β-MHC fibers are consistent with the clinical data for A28V in humans. NEW & NOTEWORTHY The differential impact of α- and β-myosin heavy chain (MHC) on contractile dynamics causes a mutant cardiac troponin T (TnTA30V) to differently modulate cardiac contractile function. TnTA30V attenuated Ca2+-activated maximal tension and length-mediated cross-bridge recruitment against α-MHC but augmented these parameters against β-MHC, suggesting divergent contractile phenotypes.


2016 ◽  
Vol 97 ◽  
pp. 82-92 ◽  
Author(s):  
Paul J.M. Wijnker ◽  
Felix W. Friedrich ◽  
Alexander Dutsch ◽  
Silke Reischmann ◽  
Alexandra Eder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document