continuous cohomology
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 1)

2020 ◽  
Vol 57 (1) ◽  
pp. 54-67
Author(s):  
Hoger Ghahramani ◽  
Saman Sattari

Abstract Let X be a Hilbert C*-module over a C*-algebra B. In this paper we introduce two classes of operator algebras on the Hilbert C*-module X called operator algebras with property and operator algebras with property ℤ, and we study the first (continuous) cohomology group of them with coefficients in various Banach bimodules under several conditions on B and X. Some of our results generalize the previous results. Also we investigate some properties of these classes of operator algebras.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950036 ◽  
Author(s):  
Mohamed Elhamdadi ◽  
Masahico Saito ◽  
Emanuele Zappala

A continuous cohomology theory for topological quandles is introduced, and compared to the algebraic theories. Extensions of topological quandles are studied with respect to continuous 2-cocycles, and used to show the differences in second cohomology groups for specific topological quandles. A method of computing the cohomology groups of the inverse limit is applied to quandles.


Author(s):  
Ahmed Abbes ◽  
Michel Gros

This chapter focuses on representations of the fundamental group and the torsor of deformations. It considers the case of an affine scheme of a particular type, qualified also as small by Faltings. It introduces the notion of Dolbeault generalized representation and the companion notion of solvable Higgs module, and then constructs a natural equivalence between these two categories. It proves that this approach generalizes simultaneously Faltings' construction for small generalized representations and Hyodo's theory of p-adic variations of Hodge–Tate structures. The discussion covers the relevant notation and conventions, results on continuous cohomology of profinite groups, objects with group actions, logarithmic geometry lexicon, Faltings' almost purity theorem, Faltings extension, Galois cohomology, Fontaine p-adic infinitesimal thickenings, Higgs–Tate torsors and algebras, Dolbeault representations, and small representations. The chapter also describes the descent of small representations and applications and concludes with an analysis of Hodge–Tate representations.


2016 ◽  
Vol 25 (03) ◽  
pp. 1640002 ◽  
Author(s):  
Mohamed Elhamdadi ◽  
El-Kaïoum M. Moutuou

We give a foundational account on topological racks and quandles. Specifically, we define the notions of ideals, kernels, units, and inner automorphism group in the context of topological racks. Further, we investigate topological rack modules and principal rack bundles. Central extensions of topological racks are then introduced providing a first step toward a general continuous cohomology theory for topological racks and quandles.


2013 ◽  
Vol 56 (2) ◽  
pp. 369-380 ◽  
Author(s):  
DANIEL G. DAVIS ◽  
TYLER LAWSON

AbstractLet n be any positive integer and p be any prime. Also, let X be any spectrum and let K(n) denote the nth Morava K-theory spectrum. Then we construct a descent spectral sequence with abutment π∗(LK(n)(X)) and E2-term equal to the continuous cohomology of Gn, the extended Morava stabilizer group, with coefficients in a certain discrete Gn-module that is built from various homotopy fixed point spectra of the Morava module of X. This spectral sequence can be contrasted with the K(n)-local En-Adams spectral sequence for π∗(LK(n)(X)), whose E2-term is not known to always be equal to a continuous cohomology group.


Sign in / Sign up

Export Citation Format

Share Document