associative commutative algebra
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2017 ◽  
Vol 9 (4) ◽  
pp. 209
Author(s):  
Joseph Dongho ◽  
Alphonse Mbah ◽  
Shuntah Roland Yotcha

We define the notion of logarithmic Poisson structure along a non zero ideal $\cali$ of an associative, commutative algebra $\cal A$ and prove that each logarithmic Poisson structure induce a skew symmetric 2-form and a Lie-Rinehart structure on the $\cal A$-module $\Omega_K(\log \cali)$ of logarithmic K\"{a}hler differential. This Lie-Rinehart structure define a representation of the underline Lie algebra. Applying the machinery of Chevaley-Eilenberg and Palais, we define the notion of logarithmic Poisson cohomology which is a measure obstructions of Linear representation of the underline Lie algebra for which the grown ring act by multiplication.


2009 ◽  
Vol 08 (02) ◽  
pp. 157-180 ◽  
Author(s):  
A. S. DZHUMADIL'DAEV

Generalizing Lie algebras, we consider anti-commutative algebras with skew-symmetric identities of degree > 3. Given a skew-symmetric polynomial f, we call an anti-commutative algebra f-Lie if it satisfies the identity f = 0. If sn is a standard skew-symmetric polynomial of degree n, then any s4-Lie algebra is f-Lie if deg f ≥ 4. We describe a free anti-commutative super-algebra with one odd generator. We exhibit various constructions of generalized Lie algebras, for example: given any derivations D, F of an associative commutative algebra U, the algebras (U, D ∧ F) and (U, id ∧ D2) are s4-Lie. An algebra (U, id ∧ D3 - 2D ∧ D2) is s'5-Lie, where s'5 is a non-standard skew-symmetric polynomial of degree 5.


Sign in / Sign up

Export Citation Format

Share Document