headspace gas
Recently Published Documents


TOTAL DOCUMENTS

1175
(FIVE YEARS 187)

H-INDEX

45
(FIVE YEARS 7)

Separations ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Oleg V. Rodinkov ◽  
Alexey Y. Pisarev ◽  
Leonid N. Moskvin ◽  
Aleksandra S. Bugaichenko ◽  
Pavel N. Nesterenko

In this study, a novel approach in headspace gas chromatographic analysis using the selective absorption of the gas extractant during concentration of the analytes was developed. The carbon dioxide used as the gas extractant was removed from the sample flow by passing it through a column packed with microdispersed sodium hydroxide granules. The analytical capabilities of the suggested method were illustrated by the determination of aliphatic and aromatic hydrocarbons in water. We established that this method allows the preconcentration of analytes in the gas phase to be increased proportionally to the volume ratios of the gas extractant before and after absorption, while the analyte limits of detection decrease 30-fold. For example, benzene can be detected in water at a concentration of 0.5 μg/L.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Jinjian Zheng ◽  
Christine L. Kirkpatrick ◽  
Daniel Lee ◽  
Xinxin Han ◽  
Ana I. Martinez ◽  
...  

AbstractThe recent detection of potent carcinogenic nitrosamine impurities in several human medicines has triggered product recalls and interrupted the supply of critical medications for hundreds of millions of patients, illuminating the need for increased testing of nitrosamines in pharmaceutical products. However, the development of analytical methods for nitrosamine detection is challenging due to high sensitivity requirements, complex matrices, and the large number and variety of samples requiring testing. Herein, we report an analytical method for the analysis of a common nitrosamine, N-nitrosodimethylamine (NDMA), in pharmaceutical products using full evaporation static headspace gas chromatography with nitrogen phosphorous detection (FE-SHSGC-NPD). This method is sensitive, specific, accurate, and precise and has the potential to serve as a universal method for testing all semi-volatile nitrosamines across different drug products. Through elimination of the detrimental headspace-liquid partition, a quantitation limit of 0.25 ppb is achieved for NDMA, a significant improvement upon traditional LC-MS methods. The extraction of nitrosamines directly from solid sample not only simplifies the sample preparation procedure but also enables the method to be used for different products as is or with minor modifications, as demonstrated by the analysis of NDMA in 10+ pharmaceutical products. The in situ nitrosation that is commonly observed in GC methods for nitrosamine analysis was completely inhibited by the addition of a small volume solvent containing pyrogallol, phosphoric acid, and isopropanol. Employing simple procedures and low-cost instrumentation, this method can be implemented in any analytical laboratory for routine nitrosamine analysis, ensuring patient safety and uninterrupted supply of critical medications.


Chemosphere ◽  
2022 ◽  
Vol 287 ◽  
pp. 132188
Author(s):  
Suman Bajracharya ◽  
Adolf Krige ◽  
Leonidas Matsakas ◽  
Ulrika Rova ◽  
Paul Christakopoulos

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 42
Author(s):  
Mijat Božović ◽  
Stefania Garzoli ◽  
Svetlana Vujović ◽  
Filippo Sapienza ◽  
Rino Ragno

Previous studies relating to prolonged and fractionated distillation procedures highlighted essential oils’ (EOs) chemical composition to be significantly dependent on the extraction duration and harvesting time. As a continuation, a hydrodistillation procedure was applied to ripe fruit material of fennel, Foeniculum vulgare Miller (Apiaceae), collected from three localities in Montenegro (Podgorica, Nikšić, and Kotor) to furnish a total of 12 EOs. Liquid and vapor phases of the samples were analyzed by Gas Chromatography/Mass Spectrometry and Headspace-Gas Chromatography/Mass Spectrometry techniques, and 18 compounds have been identified. Although both quantitative and qualitative differences between the samples were notable, the phenylpropanoids anethole (ANE) and estragole and the monoterpenoids α-terpineol (TER) and fenchone (FEN) could be singled out as the most abundant constituents. The EOs from Podgorica belong to the most common ANE-rich chemotype, while the predominance of the monoterpenoid fraction is characteristic of the samples from Nikšić and Kotor. The latter is particularly rich in TER (up to 56.5%), with significant amounts of FEN and ANE. This chemical profile could represent a new chemotype of fennel EO. Vapor phases contained mainly monoterpenoids, with increased amounts of FEN and TER, while the number of phenylpropanoids was significantly decreased.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 25
Author(s):  
Xile Cheng ◽  
Hongyuan Ji ◽  
Xiang Cheng ◽  
Dongmei Wang ◽  
Tianshi Li ◽  
...  

The importance of monitoring key aroma compounds as food characteristics to solve sample classification and authentication is increasing. The rhizome of Polygonatum sibiricum (PR, Huangjing in Chinese) has great potential to serve as an ingredient of functional foods owing to its tonic effect and flavor properties. In this study, we aimed to characterize and classify PR samples obtained from different processing levels through their volatile profiles and flavor properties by using electronic nose, electronic tongue, and headspace gas chromatography-mass spectrometry. Nine flavor indicators (four odor indicators and five taste indicators) had a strong influence on the classification ability, and a total of 54 volatile compounds were identified in all samples. The traditional Chinese processing method significantly decreased the contents of aldehydes and alkanes, while more ketones, nitrogen heterocycles, alcohols, terpenoids, sulfides, and furans/pyrans were generated in the processing cycle. The results confirmed the potential applicability of volatile profiles and flavor properties for classification of PR samples, and this study provided new insights for determining the processing level in food and pharmaceutical industries based on samples with specific flavor characteristics.


2021 ◽  
pp. 65-80
Author(s):  
Kamil Królak ◽  
Maria Buła

The pale Pilsener-style lager beers produced on a massive and craft scale were taken to analyse their basic physicochemical properties (alcohol content, pH, haze, real degree of fermentation) and volatile compounds profiles. The research was carried out using a beer analyser equipment and a headspace gas chromatography-mass spectrometry method (HS/GC-MS). The findings showed that in terms of physicochemical and flavour attributes, the quality of craft beers differed to a higher degree from the standard Pilsener beer quality than in the case of industrial beers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fengjie Yuan ◽  
Xujun Fu ◽  
Xiaomin Yu ◽  
Qinghua Yang ◽  
Hangxia Jin ◽  
...  

Evaluating the volatile compounds and characteristic fingerprints of the core cultivars of vegetable soybean would provide useful data for improving their aroma in the breeding programs. The present study used headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) to evaluate the volatile compounds of vegetable soybean seeds at a specific growth stage. In total, 93 signal peaks were identified, 63 compounds qualitatively, with 14 volatile flavor compounds providing multiple signals. The 63 volatile compounds consisted of 15 esters, 15 aldehydes, 13 alcohols, 15 ketones, one acid, and four other compounds. The peak intensity of most of the volatile compounds varied greatly between the core cultivars. The alcohols and aldehydes determined the basic volatile flavor of the vegetable soybean seeds. Volatile flavors were determined by their respective esters, ketones, or other components. Characteristic fingerprints were found in some core vegetable soybean cultivars. Four cultivars (Xiangdou, ZHE1754, Zhexian 65018-33, and Qvxian No. 1) had pleasant aromas, because of their higher content of 2-acetyl-1-pyrroline (2-AP). A principal component analysis (PCA) was used to distinguish the samples based on the signal intensity of their volatile components. The results showed that the composition and concentration of volatile compounds differed greatly between the core cultivars, with the volatile flavor compounds of soybeans being determined by the ecotype of the cultivar, the direction of breeding selection, and their geographical origin. Characteristic fingerprints of the cultivars were established by HS-GC-IMS, enabling them to be used to describe and distinguish cultivars and their offspring in future breeding studies.


Sign in / Sign up

Export Citation Format

Share Document