fluorescence light microscopy
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 3)

H-INDEX

12
(FIVE YEARS 0)

Microscopy ◽  
2021 ◽  
Author(s):  
Takaaki Kanemaru ◽  
Teruyoshi Kondo ◽  
Kei-ichiro Nakamura ◽  
Hiroyuki Morimoto ◽  
Kentaro Nishi ◽  
...  

Abstract Correlative light and electron microscopy (CLEM) is an excellent approach for examining the cellular localization of biomolecules. Here, we developed a simple method for CLEM by combining pre-embedding immunohistochemistry with a novel fluorescent probe, namely Fluolid NS Orange, and an embedding resin called ʻDurcupan™ʼ. Specimens were embedded in Durcupan™ or LR White after immunolabeling and post-fixation using glutaraldehyde and osmium tetroxide. Next, ultrathin sections were prepared on a finder grid with navigation markers. The section of the specimen embedded in Durcupan™ was found to be more stable against electron beam irradiation than specimens embedded in LR White. A fluorescence light microscopy image and a transmission electron microscopy (TEM) image, at wide-field, and low magnification, were independently obtained with the same ultrathin section. Using the three corners between finder grid bars as landmarks, fluorescence light microscopy images were superimposed with wide-field, low-magnification TEM images to identify the region of interest, which was subsequently enlarged to ascertain cellular structures localized beneath fluorescent signals. However, the enlarged TEM images appeared blurred, and fluorescence signals had a hazy appearance. To resolve this, the enlarged TEM images were replaced by high-resolution TEM images focused directly on the region of interest, thereby facilitating the collection of high-resolution CLEM images. The simple sample processing method for CLEM using osmium-resistant Fluolid NS Orange and electron beam damage-resistant Durcupan™ allowed the determination of the precise localization of fluorescence signals at subcellular levels.


2020 ◽  
Author(s):  
Jie E. Yang ◽  
Matthew R. Larson ◽  
Bryan S. Sibert ◽  
Samantha Shrum ◽  
Elizabeth R. Wright

AbstractCryo-correlative light and electron microscopy (CLEM) is a technique that uses the spatiotemporal cues from fluorescence light microscopy (FLM) to investigate the high-resolution ultrastructure of biological samples by cryo-electron microscopy (cryo-EM). Cryo-CLEM provides advantages for identifying and distinguishing fluorescently labeled proteins, macromolecular complexes, and organelles from the cellular environment. Challenges remain on how correlation workflows and software tools are implemented on different microscope platforms to support microscopy-driven structural studies. Here, we present an open-source desktop application tool, CorRelator, to bridge between cryo-FLM and cryo-EM/ET data collection instruments. CorRelator was designed to be flexible for both on-the-fly and post-acquisition correlation schemes. The CorRelator workflow is easily adapted to any fluorescence and transmission electron microscope (TEM) system configuration. CorRelator was benchmarked under cryogenic and ambient temperature conditions using several FLM and TEM instruments, demonstrating that CorRelator is a rapid and efficient application for image and position registration in CLEM studies. CorRelator is a cross-platform software featuring an intuitive Graphical User Interface (GUI) that guides the user through the correlation process. CorRelator source code is available at: https://github.com/wright-cemrc-projects/corr.


2019 ◽  
Author(s):  
Sharanjeet Atwal ◽  
Suparat Giengkam ◽  
Yanin Jaiyen ◽  
Heather Feaga ◽  
Jonathan Dworkin ◽  
...  

AbstractDespite their clinical and biological importance, the cell biology of obligate intracellular bacteria is less well understood than that of many free-living model organisms. One reason for this is that they are mostly genetically intractable. As a consequence, it is not possible to engineer strains expressing fluorescent proteins and therefore fluorescence light microscopy – a key tool in host-pathogen cell biology studies – is difficult. Strain diversity limits the universality of antibody-based immunofluorescence approaches. Here, we have developed a universal labelling protocol for intracellular bacteria based on a clickable methionine analog. Whilst we have applied this to obligate intracellular bacteria, we expect it to be useful for labelling free living bacteria as well as other intracellular pathogens.


2018 ◽  
Author(s):  
Daniela Boassa ◽  
Sakina P. Lemieux ◽  
Varda Lev-Ram ◽  
Junru Hu ◽  
Qing Xiong ◽  
...  

AbstractA protein complementation assay (PCA) for detecting and localizing intracellular protein-protein interactions (PPIs) was built by bisection of miniSOG, a fluorescent flavoprotein derived from the light, oxygen, voltage (LOV)-2 domain of Arabidopsis phototropin. When brought together by interacting proteins, the fragments reconstitute a functional reporter that permits tagged protein complexes to be visualized by fluorescence light microscopy (LM), and then by standard as well as “multicolor” electron microscopy (EM) imaging methods via the photooxidation of 3-3’-diaminobenzidine (DAB) and its lanthanide-conjugated derivatives.


OBM Genetics ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 1-1 ◽  
Author(s):  
Jin-Ho Lee ◽  
◽  
Florence Laure Djikimi Tchetgna ◽  
Matthias Krufczik ◽  
Eberhard Schmitt ◽  
...  

2018 ◽  
Vol 29 (13) ◽  
pp. 1519-1525 ◽  
Author(s):  
Jen-Yi Lee ◽  
Maiko Kitaoka

Fluorescence light microscopy is an indispensable approach for the investigation of cell biological mechanisms. With the development of cutting-edge tools such as genetically encoded fluorescent proteins and superresolution methods, light microscopy is more powerful than ever at providing insight into a broad range of phenomena, from bacterial fission to cancer metastasis. However, as with all experimental approaches, care must be taken to ensure reliable and reproducible data collection, analysis, and reporting. Each step of every imaging experiment, from design to execution to communication to data management, should be critically assessed for bias, rigor, and reproducibility. This Perspective provides a basic “best practices” guide for designing and executing fluorescence imaging experiments, with the goal of introducing researchers to concepts that will help empower them to acquire images with rigor.


2018 ◽  
Vol 51 (7) ◽  
pp. 387-398
Author(s):  
Khalid Pervaiz Akhtar ◽  
Muhammad Yussouf Saleem ◽  
Sumaira Yousaf ◽  
Najeeb Ullah ◽  
Ghulam Rasool ◽  
...  

Tomato (Solanum lycopersicum L.) plants showing stunting, big bud, leaves yellowing or reddening and witches’-broom symptoms were observed since 2009 in Pakistan. A weed Parthenium hysterophorus grown in and around tomato fields also exhibited witches’-broom like symptoms. Fluorescence light microscopy of hand-cut stem stalk sections treated with Dienes’ stain showed blue areas in the phloem region of both tomato and P. hysterophorus symptomatic plants that indicated the association of phytoplasma with the complex. Amplification of 1.2 kb 16S rDNA fragment in nested PCR confirmed that the symptomatic tomato and P. hysterophorus plants are infected by a phytoplasma. Partial sequencing of 16S rRNA (GenBank accession: LT671581 and LT671583) and virtual restriction fragment length polymorphism confirmed that the phytoplasma associated with both plant species had the greatest homology to 16SrII-D subgroup. Disease was successfully transmitted by grafting and leafhopper Orosius albicinctus in tomato plants. This is the first report of natural occurrence of 16SrII-D phytoplasma in tomatoes and a weed P. hysterophorus in Pakistan.


Author(s):  
Konstantinos Palikaras ◽  
Nektarios Tavernarakis

2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Ulrike Endesfelder

AbstractDuring the last few decades, correlative fluorescence light and electron microscopy (FLM-EM) has gained increased interest in the life sciences concomitant with the advent of fluorescence light microscopy. It has become, accompanied by numerous developments in both techniques, an important tool to study bio-cellular structure and function as it combines the specificity of fluorescence labeling with the high structural resolution and cellular context information given by the EM images. Having the recently introduced single-molecule localization microscopy techniques (SMLM) at hand, FLM-EM can now make use of improved fluorescence light microscopy resolution, single-molecule sensitivity and quantification strategies. Here, currently used methods for correlative SMLM and EM including the special requirements in sample preparation and imaging routines are summarized and an outlook on remaining challenges concerning methods and instrumentation is provided.


Sign in / Sign up

Export Citation Format

Share Document