fermentation liquor
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 3)

2020 ◽  
Vol 397 ◽  
pp. 125490 ◽  
Author(s):  
Yeting Shen ◽  
Shuang Qiu ◽  
Zhipeng Chen ◽  
Yaping Zhang ◽  
Jonathan Trent ◽  
...  

2020 ◽  
Vol 30 (16) ◽  
pp. 127297
Author(s):  
Zhidan Yu ◽  
Xiaoqin Li ◽  
Fang Zhou ◽  
Pengying Zhang ◽  
Kaoshan Chen

2020 ◽  
Vol 60 (5) ◽  
pp. 659 ◽  
Author(s):  
Gamonmas Dagaew ◽  
Anusorn Cherdthong ◽  
Metha Wanapat ◽  
Pin Chanjula

Context Feeding ruminants with fresh cassava roots (FCR) is limited because they have a high concentration of hydrocyanic acid (HCN). Thus, it was hypothesised that receiving a feed block containing high sulfur (FBS) would reduce hydrocyanic acid (HCN) in FCR and improve rumen fermentation and nutrient digestibility in animals. Aims The goal of the present work was to study the influence of the ratio of FCR to rice straw (RS) together with FBS on kinetics of gas production, HCN concentration, fermentation characteristics and nutrient digestibility, using in vitro technique. Methods The experimental design was a 4 × 2 factorial arrangement in a completely randomised design, with three replications per treatment. Factor A was the FCR to RS ratio, which was 100:0, 60:40, 40:60 or 0:100. Factor B was sulfur, which was provided as two concentrations in FBS (2% and 4% DM). Gas production was recorded after incubation, at 0, 0.5, 1, 2, 4, 6, 8, 12, 18, 24, 48, 72 and 96 h. Fermentation liquor was collected and determined for kinetics of gas production, HCN concentration, fermentation characteristics and nutrient digestibility. Key results Cassava root to RS ratio influenced the cumulative gas production after 96 h. Inclusion of sulfur in the FBS at 4% increased the cumulative gas production, when compared with inclusion at 2%. The gas production from degradable fraction (b) and the rate of gas production (c) were significantly different among the treatments with different FCR:RS ratios, whereas there was no difference between using 2% and 4% sulfur in the FBS. The HCN concentration in fermentation liquor increased with an increasing proportion of FCR. Furthermore, inclusion of sulfur in the feed block at 4% reduced HCN concentration by 42.8%, when compared with inclusion at 2% (P < 0.05). Ammonia-nitrogen concentration was significantly different among the FCR:RS-ratio treatments and was reduced when the proportion of FCR was decreased (P < 0.05). In vitro digestibility was significantly increased with an increasing proportion of FCR. Increasing the proportion of FCR with 4% of sulfur in the FBS significantly increased in vitro DM digestibility, compared with 2% sulfur. Increasing the FCR:RS ratio with 4% of sulfur in the FBS increased the proportion of propionic acid (P < 0.05). Conclusions Using a high FCR:RS ratio (100:0 or 60:40) with 4% sulfur in the FBS enhanced kinetics of gas production, propionic molar proportion, nutrient digestibility, and HCN detoxification by rumen microbes in an in vitro trial. Implications An in vivo study should be encouraged to verify the results and obtain more data.


Sign in / Sign up

Export Citation Format

Share Document