В работе дается обзор подходов к решению задач дискретной оптимизации с интервальной целевой функцией. Эти подходы рассматриваются в общем контексте исследований оптимизационных задач с неопределенностями в постановках. Приводятся варианты концепций оптимальности решений для задач дискретной оптимизации с интервальной целевой функцией - робастные решения, множества решений, оптимальных по Парето, слабые и сильные оптимальные решения, объединенные множества решений и др. Оценивается предпочтительность выбора той или иной концепции оптимальности при решении задач и отмечаются ограничения для применения использующих их подходов
Optimization problems with uncertainties in their input data have been investigated by many researchers in different directions. There are a lot of sources of the uncertainties in the input data for applied problems. Inaccurate measurements and variability of the parameters with time are some of such sources. The interval of possible values of uncertain parameter is the natural and the only possible way to represent the uncertainty for a wide share of applied problems. We consider discrete optimization problems with interval uncertainties in their objective functions. The purpose of the paper is to provide an overview of the investigations in this field. The overview is given in the overall context of the researches of optimization problems with uncertainties. We review the interval approaches for the discrete optimization problem with interval objective function. The approaches we consider operate with the interval values and are focused on obtaining possible solutions or certain sets of the solutions that are optimal according to some concepts of optimality that are used by the approaches. We consider the different concepts of optimality: robust solutions, the Pareto sets, weak and strong solutions, the united solution sets, the sets of possible approximate solutions that correspond to possible values of uncertain parameters. All the approaches we consider allow absence of information on probabilistic distribution on intervals of possible values of parameters, though some of them may use the information to evaluate the probabilities of possible solutions, the distribution on the interval of possible objective function values for the solutions, etc. We assess the possibilities and limitations of the considered approaches