prime and semiprime rings
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 39 (4) ◽  
pp. 65-72
Author(s):  
Faiza Shujat

The purpose of the present paper is to prove some results concerning symmetric generalized biderivations on prime and semiprime rings which partially extend some results of Vukman \cite {V}. Infact we prove that: let $R$ be a prime ring of characteristic not two and $I$ be a nonzro ideal of $R$. If $\Delta$ is a symmetric generalized biderivation on $R$ with associated biderivation $D$ such that $[\Delta(x,x), \Delta(y,y)]=0$ for all $x,y \in I$, then one of the following conditions hold\\ \begin{enumerate} \item $R$ is commutative. \item $\Delta$ acts as a left bimultiplier on $R$. \end{enumerate}


2020 ◽  
pp. 77-83
Author(s):  
Mohammad Shadab Khan ◽  
Mohd Arif Raza ◽  
Nadeemur Rehman

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d ( r ○ s)(r ○ s) + ( r ○ s) d ( r ○ s)n - d ( r ○ s))m for all r, s ϵ I, then R is commutative. (ii) If (d ( r ○ s)( r ○ s) + ( r ○ s) d ( r ○ s)n - d (r ○ s))m ϵ Z(R) for all r, s ϵ I, then R satisfies s4, the standard identity in four variables. Moreover, we also examine the case when R is a semiprime ring.


Author(s):  
Rita Prestigiacomo

Let [Formula: see text] be a prime ring with [Formula: see text], [Formula: see text] a non-central Lie ideal of [Formula: see text], [Formula: see text] its Martindale quotient ring and [Formula: see text] its extended centroid. Let [Formula: see text] and [Formula: see text] be nonzero generalized derivations on [Formula: see text] such that [Formula: see text] Then there exists [Formula: see text] such that [Formula: see text] and [Formula: see text], for any [Formula: see text], unless [Formula: see text], where [Formula: see text] is the algebraic closure of [Formula: see text].


Author(s):  
A. Alahmadi ◽  
H. Alhazmi ◽  
S. Ali ◽  
N.A. Dar ◽  
A.N. Khan

2019 ◽  
pp. 1546-1550
Author(s):  
Shahed Ali Hamil ◽  
Abdulrahman H. Majeed

Let M be a weak Nobusawa -ring and γ be a non-zero element of Γ. In this paper, we introduce concept of k-reverse derivation, Jordan k-reverse derivation, generalized k-reverse derivation, and Jordan generalized k-reverse derivation of Γ-ring, and γ-homomorphism, anti-γ-homomorphism of M. Also, we give some commutattivity conditions on γ-prime Γ-ring and γ-semiprime Γ-ring .


2019 ◽  
Vol 16 (2) ◽  
pp. 0389
Author(s):  
Faraj Et al.

In this paper the centralizing and commuting concerning skew left -derivations and skew left -derivations associated with antiautomorphism on prime and semiprime rings were studied and  the commutativity of Lie ideal under certain conditions were proved.


2019 ◽  
Vol 16 (2) ◽  
pp. 0389
Author(s):  
Faraj Et al.

In this paper the centralizing and commuting concerning skew left -derivations and skew left -derivations associated with antiautomorphism on prime and semiprime rings were studied and  the commutativity of Lie ideal under certain conditions were proved.


2019 ◽  
Vol 26 (01) ◽  
pp. 93-104
Author(s):  
Vincenzo De Filippis ◽  
Nadeem ur Rehman

Let R be a prime ring of characteristic different from 2, Z(R) its center, L a Lie ideal of R, and m, n, s, t ≥ 1 fixed integers with t ≤ m + n + s. Suppose that α is a non-trivial automorphism of R and let Φ(x, y) = [x, y]t – [x, y]m [α([x, y]),[x, y]]n [x, y]s. Thus, (a) if Φ(u, v) = 0 for any u, v ∈ L, then L ⊆ Z(R); (b) if Φ(u, v) ∈ Z(R) for any u, v ∈ L, then either L ⊆ Z(R) or R satisfies s4, the standard identity of degree 4. We also extend the results to semiprime rings.


Sign in / Sign up

Export Citation Format

Share Document